HgCdTe composition determination using spectroscopic ellipsometry during molecular beam epitaxy growth of near-infrared avalanche photodiode device structures

The application of spectroscopic ellipsometry (SE) for real-time composition determination during molecular beam epitaxy (MBE) growth of Hg^sub 1-x^Cd^sub x^Te alloys with x>0.5 is reported. Techniques previously developed for SE determination of composition in long-wavelength infrared (LWIR) HgC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2002-07, Vol.31 (7), p.688-693
Hauptverfasser: DE LYON, T. J, OLSON, G. L, ROTH, J. A, JENSEN, J. E, HUNTER, A. T, JACK, BAILEY, S. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 7
container_start_page 688
container_title Journal of electronic materials
container_volume 31
creator DE LYON, T. J
OLSON, G. L
ROTH, J. A
JENSEN, J. E
HUNTER, A. T
JACK
BAILEY, S. L
description The application of spectroscopic ellipsometry (SE) for real-time composition determination during molecular beam epitaxy (MBE) growth of Hg^sub 1-x^Cd^sub x^Te alloys with x>0.5 is reported. Techniques previously developed for SE determination of composition in long-wavelength infrared (LWIR) HgCdTe have been successfully extended to near-infrared HgCdTe avalanche photodiode (APD) device structures with x values in the range of 0.6-0.8. Ellipsometric data collected over a spectral range of 1.7-5 eV were used to measure depth profiles of HgCdTe alloy composition through the use of an optical model of the growth surface. The optical model used a dielectric-function database collected through the growth of a set of HgCdTe calibration samples with x ranging from 0.6 to 0.8. The sensitivity of this SE method of composition determination is estimated to be Δx 0.0002 at x=0.6, which is sufficiently low to sense composition changes arising from flux variations of less than 0.1%. Errors in composition determination because of Hg-flux variations appear to be inconsequential, while substrate-temperature fluctuations have been observed to alter the derived composition at a rate of -0.0004/°C. By comparing the composition inferred from SE and postgrowth 300 K IR transmission measurements on a set of APD device structures, the run-to-run precision of the Se-derived composition (at x=0.6) is estimated to be ±0.0012, which is equivalent to the precision achieved with the same instrumentation during the growth of mid-wavelength infrared (MWIR) HgCdTe alloys in the same MBE system.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-002-0220-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27148048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27148048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-2d8ba3a72d874854dbf9d60cc001443d37474c608e602b52cbce96e20cedccb43</originalsourceid><addsrcrecordid>eNpdkc2KFDEUhYM4YDv6AO4CorvS_FUqvZTGmREG3Iwwu5C6udWdoapSJqnRfhmfddL2gODqcuG7P-ccQt5x9okz1n3OnGutGsZEw4RgjX5BNrxVsuFG378kGyY1b1oh21fkdc4PjPGWG74hf272O3-HFOK0xBxKiDP1WDBNYXZ_uzWHeU_zglBSzBCXABTHMSw5TljSkfo1nYgpjgjr6BLt0U0Ul1Dc7yPdp_irHGgc6IwuNWEekkvoqXt0o5vhgHQ5xBJ9iB7r5ccASHNJK5Q1YX5DLgY3Znz7XC_Jj6uvd7ub5vb79bfdl9sGpBSlEd70Trqu1k6ZVvl-2HrNAKpOpaSXneoUaGZQM9G3AnrArUbBAD1Ar-Ql-Xjeu6T4c8Vc7BQyVJluxrhmKzquDFOmgu__Ax_imub6m-XVU9EZqVml-JmCallOONglhcmlY4XsKS97zsvWvOwpL6vrzIfnzS6DG6tNM4T8b1AayeRWyCdiv5pe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015278360</pqid></control><display><type>article</type><title>HgCdTe composition determination using spectroscopic ellipsometry during molecular beam epitaxy growth of near-infrared avalanche photodiode device structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>DE LYON, T. J ; OLSON, G. L ; ROTH, J. A ; JENSEN, J. E ; HUNTER, A. T ; JACK ; BAILEY, S. L</creator><creatorcontrib>DE LYON, T. J ; OLSON, G. L ; ROTH, J. A ; JENSEN, J. E ; HUNTER, A. T ; JACK ; BAILEY, S. L</creatorcontrib><description>The application of spectroscopic ellipsometry (SE) for real-time composition determination during molecular beam epitaxy (MBE) growth of Hg^sub 1-x^Cd^sub x^Te alloys with x&gt;0.5 is reported. Techniques previously developed for SE determination of composition in long-wavelength infrared (LWIR) HgCdTe have been successfully extended to near-infrared HgCdTe avalanche photodiode (APD) device structures with x values in the range of 0.6-0.8. Ellipsometric data collected over a spectral range of 1.7-5 eV were used to measure depth profiles of HgCdTe alloy composition through the use of an optical model of the growth surface. The optical model used a dielectric-function database collected through the growth of a set of HgCdTe calibration samples with x ranging from 0.6 to 0.8. The sensitivity of this SE method of composition determination is estimated to be Δx 0.0002 at x=0.6, which is sufficiently low to sense composition changes arising from flux variations of less than 0.1%. Errors in composition determination because of Hg-flux variations appear to be inconsequential, while substrate-temperature fluctuations have been observed to alter the derived composition at a rate of -0.0004/°C. By comparing the composition inferred from SE and postgrowth 300 K IR transmission measurements on a set of APD device structures, the run-to-run precision of the Se-derived composition (at x=0.6) is estimated to be ±0.0012, which is equivalent to the precision achieved with the same instrumentation during the growth of mid-wavelength infrared (MWIR) HgCdTe alloys in the same MBE system.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-002-0220-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Alloys ; Applied sciences ; Calibration ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Investigations ; Lasers ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular beam epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Optoelectronic devices ; Photodiodes; phototransistors; photoresistors ; Physics ; Radiation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensors ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Journal of electronic materials, 2002-07, Vol.31 (7), p.688-693</ispartof><rights>2002 INIST-CNRS</rights><rights>TMS-The Minerals, Metals and Materials Society 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-2d8ba3a72d874854dbf9d60cc001443d37474c608e602b52cbce96e20cedccb43</citedby><cites>FETCH-LOGICAL-c332t-2d8ba3a72d874854dbf9d60cc001443d37474c608e602b52cbce96e20cedccb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13830392$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DE LYON, T. J</creatorcontrib><creatorcontrib>OLSON, G. L</creatorcontrib><creatorcontrib>ROTH, J. A</creatorcontrib><creatorcontrib>JENSEN, J. E</creatorcontrib><creatorcontrib>HUNTER, A. T</creatorcontrib><creatorcontrib>JACK</creatorcontrib><creatorcontrib>BAILEY, S. L</creatorcontrib><title>HgCdTe composition determination using spectroscopic ellipsometry during molecular beam epitaxy growth of near-infrared avalanche photodiode device structures</title><title>Journal of electronic materials</title><description>The application of spectroscopic ellipsometry (SE) for real-time composition determination during molecular beam epitaxy (MBE) growth of Hg^sub 1-x^Cd^sub x^Te alloys with x&gt;0.5 is reported. Techniques previously developed for SE determination of composition in long-wavelength infrared (LWIR) HgCdTe have been successfully extended to near-infrared HgCdTe avalanche photodiode (APD) device structures with x values in the range of 0.6-0.8. Ellipsometric data collected over a spectral range of 1.7-5 eV were used to measure depth profiles of HgCdTe alloy composition through the use of an optical model of the growth surface. The optical model used a dielectric-function database collected through the growth of a set of HgCdTe calibration samples with x ranging from 0.6 to 0.8. The sensitivity of this SE method of composition determination is estimated to be Δx 0.0002 at x=0.6, which is sufficiently low to sense composition changes arising from flux variations of less than 0.1%. Errors in composition determination because of Hg-flux variations appear to be inconsequential, while substrate-temperature fluctuations have been observed to alter the derived composition at a rate of -0.0004/°C. By comparing the composition inferred from SE and postgrowth 300 K IR transmission measurements on a set of APD device structures, the run-to-run precision of the Se-derived composition (at x=0.6) is estimated to be ±0.0012, which is equivalent to the precision achieved with the same instrumentation during the growth of mid-wavelength infrared (MWIR) HgCdTe alloys in the same MBE system.[PUBLICATION ABSTRACT]</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Calibration</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular beam epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Optoelectronic devices</subject><subject>Photodiodes; phototransistors; photoresistors</subject><subject>Physics</subject><subject>Radiation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensors</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc2KFDEUhYM4YDv6AO4CorvS_FUqvZTGmREG3Iwwu5C6udWdoapSJqnRfhmfddL2gODqcuG7P-ccQt5x9okz1n3OnGutGsZEw4RgjX5BNrxVsuFG378kGyY1b1oh21fkdc4PjPGWG74hf272O3-HFOK0xBxKiDP1WDBNYXZ_uzWHeU_zglBSzBCXABTHMSw5TljSkfo1nYgpjgjr6BLt0U0Ul1Dc7yPdp_irHGgc6IwuNWEekkvoqXt0o5vhgHQ5xBJ9iB7r5ccASHNJK5Q1YX5DLgY3Znz7XC_Jj6uvd7ub5vb79bfdl9sGpBSlEd70Trqu1k6ZVvl-2HrNAKpOpaSXneoUaGZQM9G3AnrArUbBAD1Ar-Ql-Xjeu6T4c8Vc7BQyVJluxrhmKzquDFOmgu__Ax_imub6m-XVU9EZqVml-JmCallOONglhcmlY4XsKS97zsvWvOwpL6vrzIfnzS6DG6tNM4T8b1AayeRWyCdiv5pe</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>DE LYON, T. J</creator><creator>OLSON, G. L</creator><creator>ROTH, J. A</creator><creator>JENSEN, J. E</creator><creator>HUNTER, A. T</creator><creator>JACK</creator><creator>BAILEY, S. L</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020701</creationdate><title>HgCdTe composition determination using spectroscopic ellipsometry during molecular beam epitaxy growth of near-infrared avalanche photodiode device structures</title><author>DE LYON, T. J ; OLSON, G. L ; ROTH, J. A ; JENSEN, J. E ; HUNTER, A. T ; JACK ; BAILEY, S. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-2d8ba3a72d874854dbf9d60cc001443d37474c608e602b52cbce96e20cedccb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Calibration</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular beam epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Optoelectronic devices</topic><topic>Photodiodes; phototransistors; photoresistors</topic><topic>Physics</topic><topic>Radiation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensors</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE LYON, T. J</creatorcontrib><creatorcontrib>OLSON, G. L</creatorcontrib><creatorcontrib>ROTH, J. A</creatorcontrib><creatorcontrib>JENSEN, J. E</creatorcontrib><creatorcontrib>HUNTER, A. T</creatorcontrib><creatorcontrib>JACK</creatorcontrib><creatorcontrib>BAILEY, S. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE LYON, T. J</au><au>OLSON, G. L</au><au>ROTH, J. A</au><au>JENSEN, J. E</au><au>HUNTER, A. T</au><au>JACK</au><au>BAILEY, S. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HgCdTe composition determination using spectroscopic ellipsometry during molecular beam epitaxy growth of near-infrared avalanche photodiode device structures</atitle><jtitle>Journal of electronic materials</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>31</volume><issue>7</issue><spage>688</spage><epage>693</epage><pages>688-693</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The application of spectroscopic ellipsometry (SE) for real-time composition determination during molecular beam epitaxy (MBE) growth of Hg^sub 1-x^Cd^sub x^Te alloys with x&gt;0.5 is reported. Techniques previously developed for SE determination of composition in long-wavelength infrared (LWIR) HgCdTe have been successfully extended to near-infrared HgCdTe avalanche photodiode (APD) device structures with x values in the range of 0.6-0.8. Ellipsometric data collected over a spectral range of 1.7-5 eV were used to measure depth profiles of HgCdTe alloy composition through the use of an optical model of the growth surface. The optical model used a dielectric-function database collected through the growth of a set of HgCdTe calibration samples with x ranging from 0.6 to 0.8. The sensitivity of this SE method of composition determination is estimated to be Δx 0.0002 at x=0.6, which is sufficiently low to sense composition changes arising from flux variations of less than 0.1%. Errors in composition determination because of Hg-flux variations appear to be inconsequential, while substrate-temperature fluctuations have been observed to alter the derived composition at a rate of -0.0004/°C. By comparing the composition inferred from SE and postgrowth 300 K IR transmission measurements on a set of APD device structures, the run-to-run precision of the Se-derived composition (at x=0.6) is estimated to be ±0.0012, which is equivalent to the precision achieved with the same instrumentation during the growth of mid-wavelength infrared (MWIR) HgCdTe alloys in the same MBE system.[PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-002-0220-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2002-07, Vol.31 (7), p.688-693
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_27148048
source SpringerLink Journals - AutoHoldings
subjects Alloys
Applied sciences
Calibration
Composition and phase identification
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Investigations
Lasers
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Molecular beam epitaxy
Molecular, atomic, ion, and chemical beam epitaxy
Optoelectronic devices
Photodiodes
phototransistors
photoresistors
Physics
Radiation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
title HgCdTe composition determination using spectroscopic ellipsometry during molecular beam epitaxy growth of near-infrared avalanche photodiode device structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HgCdTe%20composition%20determination%20using%20spectroscopic%20ellipsometry%20during%20molecular%20beam%20epitaxy%20growth%20of%20near-infrared%20avalanche%20photodiode%20device%20structures&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=DE%20LYON,%20T.%20J&rft.date=2002-07-01&rft.volume=31&rft.issue=7&rft.spage=688&rft.epage=693&rft.pages=688-693&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-002-0220-6&rft_dat=%3Cproquest_cross%3E27148048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015278360&rft_id=info:pmid/&rfr_iscdi=true