Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy

Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-09, Vol.22 (18), p.7636-7643
Hauptverfasser: Chen, Zhangfu, Hoang, Anh Tuan, Hwang, Woohyun, Seo, Dongjea, Cho, Minhyun, Kim, Young Duck, Yang, Lianqiao, Soon, Aloysius, Ahn, Jong-Hyun, Choi, Heon-Jin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7643
container_issue 18
container_start_page 7636
container_title Nano letters
container_volume 22
creator Chen, Zhangfu
Hoang, Anh Tuan
Hwang, Woohyun
Seo, Dongjea
Cho, Minhyun
Kim, Young Duck
Yang, Lianqiao
Soon, Aloysius
Ahn, Jong-Hyun
Choi, Heon-Jin
description Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.
doi_str_mv 10.1021/acs.nanolett.2c02763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714657576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714657576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBgweWVLsxD_JWFVtQSpioLBajuuAq8QOtlMpA-9OohbYmO6V7jlH93wA3GI0wyjF91KFmZXW1TrGWapQyll2BiaYZihhRZGe_-45uQRXIewRQkVG0QR8vWkfjZI1XDi761Q0BxN7KO0Obl3r3r1sP3poLFzWWkXvQvRmFGm41r6R1nQNfOnqyuw0fDLKO2_K0ll4MPIvUcN5dI1RcOW8OumCcm1_DS4qWQd9c5pT8LpabhcPyeZ5_biYbxKZpTQmNEc5ZjmRldY0L1UlWY4RI4gXJSEMF5zKAiud0ooUGSMVQ5QwojjGnHCZZVNwd8xtvfvsdIiiMUHpupZWuy6IlGPCKKcDtykgR-n4Y_C6Eq03jfS9wEiMtMVAW_zQFifagw0dbeN17zpvhz7_W74BD2SI6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714657576</pqid></control><display><type>article</type><title>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</title><source>ACS Publications</source><creator>Chen, Zhangfu ; Hoang, Anh Tuan ; Hwang, Woohyun ; Seo, Dongjea ; Cho, Minhyun ; Kim, Young Duck ; Yang, Lianqiao ; Soon, Aloysius ; Ahn, Jong-Hyun ; Choi, Heon-Jin</creator><creatorcontrib>Chen, Zhangfu ; Hoang, Anh Tuan ; Hwang, Woohyun ; Seo, Dongjea ; Cho, Minhyun ; Kim, Young Duck ; Yang, Lianqiao ; Soon, Aloysius ; Ahn, Jong-Hyun ; Choi, Heon-Jin</creatorcontrib><description>Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c02763</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2022-09, Vol.22 (18), p.7636-7643</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</citedby><cites>FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</cites><orcidid>0000-0003-0911-1391 ; 0000-0003-2593-9826 ; 0000-0002-6273-9324 ; 0000-0003-4656-2095 ; 0000-0002-8135-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.2c02763$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.2c02763$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Chen, Zhangfu</creatorcontrib><creatorcontrib>Hoang, Anh Tuan</creatorcontrib><creatorcontrib>Hwang, Woohyun</creatorcontrib><creatorcontrib>Seo, Dongjea</creatorcontrib><creatorcontrib>Cho, Minhyun</creatorcontrib><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Soon, Aloysius</creatorcontrib><creatorcontrib>Ahn, Jong-Hyun</creatorcontrib><creatorcontrib>Choi, Heon-Jin</creatorcontrib><title>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBgweWVLsxD_JWFVtQSpioLBajuuAq8QOtlMpA-9OohbYmO6V7jlH93wA3GI0wyjF91KFmZXW1TrGWapQyll2BiaYZihhRZGe_-45uQRXIewRQkVG0QR8vWkfjZI1XDi761Q0BxN7KO0Obl3r3r1sP3poLFzWWkXvQvRmFGm41r6R1nQNfOnqyuw0fDLKO2_K0ll4MPIvUcN5dI1RcOW8OumCcm1_DS4qWQd9c5pT8LpabhcPyeZ5_biYbxKZpTQmNEc5ZjmRldY0L1UlWY4RI4gXJSEMF5zKAiud0ooUGSMVQ5QwojjGnHCZZVNwd8xtvfvsdIiiMUHpupZWuy6IlGPCKKcDtykgR-n4Y_C6Eq03jfS9wEiMtMVAW_zQFifagw0dbeN17zpvhz7_W74BD2SI6Q</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Chen, Zhangfu</creator><creator>Hoang, Anh Tuan</creator><creator>Hwang, Woohyun</creator><creator>Seo, Dongjea</creator><creator>Cho, Minhyun</creator><creator>Kim, Young Duck</creator><creator>Yang, Lianqiao</creator><creator>Soon, Aloysius</creator><creator>Ahn, Jong-Hyun</creator><creator>Choi, Heon-Jin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0911-1391</orcidid><orcidid>https://orcid.org/0000-0003-2593-9826</orcidid><orcidid>https://orcid.org/0000-0002-6273-9324</orcidid><orcidid>https://orcid.org/0000-0003-4656-2095</orcidid><orcidid>https://orcid.org/0000-0002-8135-7719</orcidid></search><sort><creationdate>20220928</creationdate><title>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</title><author>Chen, Zhangfu ; Hoang, Anh Tuan ; Hwang, Woohyun ; Seo, Dongjea ; Cho, Minhyun ; Kim, Young Duck ; Yang, Lianqiao ; Soon, Aloysius ; Ahn, Jong-Hyun ; Choi, Heon-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhangfu</creatorcontrib><creatorcontrib>Hoang, Anh Tuan</creatorcontrib><creatorcontrib>Hwang, Woohyun</creatorcontrib><creatorcontrib>Seo, Dongjea</creatorcontrib><creatorcontrib>Cho, Minhyun</creatorcontrib><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Soon, Aloysius</creatorcontrib><creatorcontrib>Ahn, Jong-Hyun</creatorcontrib><creatorcontrib>Choi, Heon-Jin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhangfu</au><au>Hoang, Anh Tuan</au><au>Hwang, Woohyun</au><au>Seo, Dongjea</au><au>Cho, Minhyun</au><au>Kim, Young Duck</au><au>Yang, Lianqiao</au><au>Soon, Aloysius</au><au>Ahn, Jong-Hyun</au><au>Choi, Heon-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>22</volume><issue>18</issue><spage>7636</spage><epage>7643</epage><pages>7636-7643</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.2c02763</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0911-1391</orcidid><orcidid>https://orcid.org/0000-0003-2593-9826</orcidid><orcidid>https://orcid.org/0000-0002-6273-9324</orcidid><orcidid>https://orcid.org/0000-0003-4656-2095</orcidid><orcidid>https://orcid.org/0000-0002-8135-7719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2022-09, Vol.22 (18), p.7636-7643
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2714657576
source ACS Publications
title Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20Conductivity%20and%20Topography%20in%20Electrostrictive%20Germanium%20Sulfide%20Microribbon%20via%20Conductive%20Atomic%20Force%20Microscopy&rft.jtitle=Nano%20letters&rft.au=Chen,%20Zhangfu&rft.date=2022-09-28&rft.volume=22&rft.issue=18&rft.spage=7636&rft.epage=7643&rft.pages=7636-7643&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c02763&rft_dat=%3Cproquest_cross%3E2714657576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714657576&rft_id=info:pmid/&rfr_iscdi=true