Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy
Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-09, Vol.22 (18), p.7636-7643 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7643 |
---|---|
container_issue | 18 |
container_start_page | 7636 |
container_title | Nano letters |
container_volume | 22 |
creator | Chen, Zhangfu Hoang, Anh Tuan Hwang, Woohyun Seo, Dongjea Cho, Minhyun Kim, Young Duck Yang, Lianqiao Soon, Aloysius Ahn, Jong-Hyun Choi, Heon-Jin |
description | Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials. |
doi_str_mv | 10.1021/acs.nanolett.2c02763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714657576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714657576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBgweWVLsxD_JWFVtQSpioLBajuuAq8QOtlMpA-9OohbYmO6V7jlH93wA3GI0wyjF91KFmZXW1TrGWapQyll2BiaYZihhRZGe_-45uQRXIewRQkVG0QR8vWkfjZI1XDi761Q0BxN7KO0Obl3r3r1sP3poLFzWWkXvQvRmFGm41r6R1nQNfOnqyuw0fDLKO2_K0ll4MPIvUcN5dI1RcOW8OumCcm1_DS4qWQd9c5pT8LpabhcPyeZ5_biYbxKZpTQmNEc5ZjmRldY0L1UlWY4RI4gXJSEMF5zKAiud0ooUGSMVQ5QwojjGnHCZZVNwd8xtvfvsdIiiMUHpupZWuy6IlGPCKKcDtykgR-n4Y_C6Eq03jfS9wEiMtMVAW_zQFifagw0dbeN17zpvhz7_W74BD2SI6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714657576</pqid></control><display><type>article</type><title>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</title><source>ACS Publications</source><creator>Chen, Zhangfu ; Hoang, Anh Tuan ; Hwang, Woohyun ; Seo, Dongjea ; Cho, Minhyun ; Kim, Young Duck ; Yang, Lianqiao ; Soon, Aloysius ; Ahn, Jong-Hyun ; Choi, Heon-Jin</creator><creatorcontrib>Chen, Zhangfu ; Hoang, Anh Tuan ; Hwang, Woohyun ; Seo, Dongjea ; Cho, Minhyun ; Kim, Young Duck ; Yang, Lianqiao ; Soon, Aloysius ; Ahn, Jong-Hyun ; Choi, Heon-Jin</creatorcontrib><description>Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c02763</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2022-09, Vol.22 (18), p.7636-7643</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</citedby><cites>FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</cites><orcidid>0000-0003-0911-1391 ; 0000-0003-2593-9826 ; 0000-0002-6273-9324 ; 0000-0003-4656-2095 ; 0000-0002-8135-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.2c02763$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.2c02763$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Chen, Zhangfu</creatorcontrib><creatorcontrib>Hoang, Anh Tuan</creatorcontrib><creatorcontrib>Hwang, Woohyun</creatorcontrib><creatorcontrib>Seo, Dongjea</creatorcontrib><creatorcontrib>Cho, Minhyun</creatorcontrib><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Soon, Aloysius</creatorcontrib><creatorcontrib>Ahn, Jong-Hyun</creatorcontrib><creatorcontrib>Choi, Heon-Jin</creatorcontrib><title>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBgweWVLsxD_JWFVtQSpioLBajuuAq8QOtlMpA-9OohbYmO6V7jlH93wA3GI0wyjF91KFmZXW1TrGWapQyll2BiaYZihhRZGe_-45uQRXIewRQkVG0QR8vWkfjZI1XDi761Q0BxN7KO0Obl3r3r1sP3poLFzWWkXvQvRmFGm41r6R1nQNfOnqyuw0fDLKO2_K0ll4MPIvUcN5dI1RcOW8OumCcm1_DS4qWQd9c5pT8LpabhcPyeZ5_biYbxKZpTQmNEc5ZjmRldY0L1UlWY4RI4gXJSEMF5zKAiud0ooUGSMVQ5QwojjGnHCZZVNwd8xtvfvsdIiiMUHpupZWuy6IlGPCKKcDtykgR-n4Y_C6Eq03jfS9wEiMtMVAW_zQFifagw0dbeN17zpvhz7_W74BD2SI6Q</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Chen, Zhangfu</creator><creator>Hoang, Anh Tuan</creator><creator>Hwang, Woohyun</creator><creator>Seo, Dongjea</creator><creator>Cho, Minhyun</creator><creator>Kim, Young Duck</creator><creator>Yang, Lianqiao</creator><creator>Soon, Aloysius</creator><creator>Ahn, Jong-Hyun</creator><creator>Choi, Heon-Jin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0911-1391</orcidid><orcidid>https://orcid.org/0000-0003-2593-9826</orcidid><orcidid>https://orcid.org/0000-0002-6273-9324</orcidid><orcidid>https://orcid.org/0000-0003-4656-2095</orcidid><orcidid>https://orcid.org/0000-0002-8135-7719</orcidid></search><sort><creationdate>20220928</creationdate><title>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</title><author>Chen, Zhangfu ; Hoang, Anh Tuan ; Hwang, Woohyun ; Seo, Dongjea ; Cho, Minhyun ; Kim, Young Duck ; Yang, Lianqiao ; Soon, Aloysius ; Ahn, Jong-Hyun ; Choi, Heon-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-58081684afee58bcfa681064079b4461975a91ce25f49364f605464c711747a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhangfu</creatorcontrib><creatorcontrib>Hoang, Anh Tuan</creatorcontrib><creatorcontrib>Hwang, Woohyun</creatorcontrib><creatorcontrib>Seo, Dongjea</creatorcontrib><creatorcontrib>Cho, Minhyun</creatorcontrib><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Yang, Lianqiao</creatorcontrib><creatorcontrib>Soon, Aloysius</creatorcontrib><creatorcontrib>Ahn, Jong-Hyun</creatorcontrib><creatorcontrib>Choi, Heon-Jin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhangfu</au><au>Hoang, Anh Tuan</au><au>Hwang, Woohyun</au><au>Seo, Dongjea</au><au>Cho, Minhyun</au><au>Kim, Young Duck</au><au>Yang, Lianqiao</au><au>Soon, Aloysius</au><au>Ahn, Jong-Hyun</au><au>Choi, Heon-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>22</volume><issue>18</issue><spage>7636</spage><epage>7643</epage><pages>7636-7643</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.2c02763</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0911-1391</orcidid><orcidid>https://orcid.org/0000-0003-2593-9826</orcidid><orcidid>https://orcid.org/0000-0002-6273-9324</orcidid><orcidid>https://orcid.org/0000-0003-4656-2095</orcidid><orcidid>https://orcid.org/0000-0002-8135-7719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2022-09, Vol.22 (18), p.7636-7643 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2714657576 |
source | ACS Publications |
title | Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20Conductivity%20and%20Topography%20in%20Electrostrictive%20Germanium%20Sulfide%20Microribbon%20via%20Conductive%20Atomic%20Force%20Microscopy&rft.jtitle=Nano%20letters&rft.au=Chen,%20Zhangfu&rft.date=2022-09-28&rft.volume=22&rft.issue=18&rft.spage=7636&rft.epage=7643&rft.pages=7636-7643&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c02763&rft_dat=%3Cproquest_cross%3E2714657576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714657576&rft_id=info:pmid/&rfr_iscdi=true |