Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization

Despite the great success of the existing work in fine-grained visual categorization (FGVC), there are still several unsolved challenges, e.g., poor interpretation and vagueness contribution. To circumvent this drawback, motivated by the hypersphere embedding method, we propose a discriminative supr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-04, Vol.35 (4), p.5092-5102
Hauptverfasser: Ye, Shuo, Peng, Qinmu, Sun, Wenju, Xu, Jiamiao, Wang, Yu, You, Xinge, Cheung, Yiu-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5102
container_issue 4
container_start_page 5092
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Ye, Shuo
Peng, Qinmu
Sun, Wenju
Xu, Jiamiao
Wang, Yu
You, Xinge
Cheung, Yiu-Ming
description Despite the great success of the existing work in fine-grained visual categorization (FGVC), there are still several unsolved challenges, e.g., poor interpretation and vagueness contribution. To circumvent this drawback, motivated by the hypersphere embedding method, we propose a discriminative suprasphere embedding (DSE) framework, which can provide intuitive geometric interpretation and effectively extract discriminative features. Specifically, DSE consists of three modules. The first module is a suprasphere embedding (SE) block, which learns discriminative information by emphasizing weight and phase. The second module is a phase activation map (PAM) used to analyze the contribution of local descriptors to the suprasphere feature representation, which uniformly highlights the object region and exhibits remarkable object localization capability. The last module is a class contribution map (CCM), which quantitatively analyzes the network classification decision and provides insight into the domain knowledge about classified objects. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our proposed method in comparison with state-of-the-art methods.
doi_str_mv 10.1109/TNNLS.2022.3202534
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714654649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9893744</ieee_id><sourcerecordid>2714654649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-928fa2d3b96b88c67b27af6c29bf88ceb9726a3f7c0686a2d9deb1f3b12871073</originalsourceid><addsrcrecordid>eNpdkElPwzAQhS0Eogj4AyChSFy4pHhJvRxRWUUFBxZxs-xkUly1SbEbJPj1TGnpAR88tuZ7TzOPkCNG-4xRc_788DB66nPKeV_gPRDFFtnjTPKcC623N2_11iOHKU0oHkkHsjC7pCcko0prs0fuL0MqY5iFxi3CJ2RP3Ty6NH-HCNnVzENVhWac1W3MrkMD-U10WKrsNaTOTbOhW8C4jeEbxW1zQHZqN01wuK775OX66nl4m48eb-6GF6O8FAO2yA3XteOV8EZ6rUupPFeuliU3vsY_eKO4dKJWJZVaImkq8KwWnnGtcG6xT85WvvPYfnSQFnaGS8B06hpou2S5YoUcFLgqoqf_0EnbxQans4IKITn6MaT4iipjm1KE2s4xEhe_LKN2mbb9Tdsu07brtFF0srbu_AyqjeQvWwSOV0AAgE3bYEcVhfgB1hyC-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033621071</pqid></control><display><type>article</type><title>Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Shuo ; Peng, Qinmu ; Sun, Wenju ; Xu, Jiamiao ; Wang, Yu ; You, Xinge ; Cheung, Yiu-Ming</creator><creatorcontrib>Ye, Shuo ; Peng, Qinmu ; Sun, Wenju ; Xu, Jiamiao ; Wang, Yu ; You, Xinge ; Cheung, Yiu-Ming</creatorcontrib><description>Despite the great success of the existing work in fine-grained visual categorization (FGVC), there are still several unsolved challenges, e.g., poor interpretation and vagueness contribution. To circumvent this drawback, motivated by the hypersphere embedding method, we propose a discriminative suprasphere embedding (DSE) framework, which can provide intuitive geometric interpretation and effectively extract discriminative features. Specifically, DSE consists of three modules. The first module is a suprasphere embedding (SE) block, which learns discriminative information by emphasizing weight and phase. The second module is a phase activation map (PAM) used to analyze the contribution of local descriptors to the suprasphere feature representation, which uniformly highlights the object region and exhibits remarkable object localization capability. The last module is a class contribution map (CCM), which quantitatively analyzes the network classification decision and provides insight into the domain knowledge about classified objects. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our proposed method in comparison with state-of-the-art methods.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3202534</identifier><identifier>PMID: 36107889</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Classification ; Data mining ; Decision analysis ; Deep hypersphere embedding ; Deep learning ; discriminative localization ; Embedding ; Feature extraction ; fine-grained visual categorization (FGVC) ; Hyperspheres ; Localization ; Location awareness ; Manuals ; Modules ; Training ; Visual discrimination ; Visualization ; weakly supervised learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-04, Vol.35 (4), p.5092-5102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-928fa2d3b96b88c67b27af6c29bf88ceb9726a3f7c0686a2d9deb1f3b12871073</citedby><cites>FETCH-LOGICAL-c351t-928fa2d3b96b88c67b27af6c29bf88ceb9726a3f7c0686a2d9deb1f3b12871073</cites><orcidid>0000-0003-0607-1777 ; 0000-0003-4863-5681 ; 0000-0001-7629-4648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9893744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9893744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36107889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Shuo</creatorcontrib><creatorcontrib>Peng, Qinmu</creatorcontrib><creatorcontrib>Sun, Wenju</creatorcontrib><creatorcontrib>Xu, Jiamiao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>You, Xinge</creatorcontrib><creatorcontrib>Cheung, Yiu-Ming</creatorcontrib><title>Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Despite the great success of the existing work in fine-grained visual categorization (FGVC), there are still several unsolved challenges, e.g., poor interpretation and vagueness contribution. To circumvent this drawback, motivated by the hypersphere embedding method, we propose a discriminative suprasphere embedding (DSE) framework, which can provide intuitive geometric interpretation and effectively extract discriminative features. Specifically, DSE consists of three modules. The first module is a suprasphere embedding (SE) block, which learns discriminative information by emphasizing weight and phase. The second module is a phase activation map (PAM) used to analyze the contribution of local descriptors to the suprasphere feature representation, which uniformly highlights the object region and exhibits remarkable object localization capability. The last module is a class contribution map (CCM), which quantitatively analyzes the network classification decision and provides insight into the domain knowledge about classified objects. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our proposed method in comparison with state-of-the-art methods.</description><subject>Classification</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Deep hypersphere embedding</subject><subject>Deep learning</subject><subject>discriminative localization</subject><subject>Embedding</subject><subject>Feature extraction</subject><subject>fine-grained visual categorization (FGVC)</subject><subject>Hyperspheres</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Manuals</subject><subject>Modules</subject><subject>Training</subject><subject>Visual discrimination</subject><subject>Visualization</subject><subject>weakly supervised learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkElPwzAQhS0Eogj4AyChSFy4pHhJvRxRWUUFBxZxs-xkUly1SbEbJPj1TGnpAR88tuZ7TzOPkCNG-4xRc_788DB66nPKeV_gPRDFFtnjTPKcC623N2_11iOHKU0oHkkHsjC7pCcko0prs0fuL0MqY5iFxi3CJ2RP3Ty6NH-HCNnVzENVhWac1W3MrkMD-U10WKrsNaTOTbOhW8C4jeEbxW1zQHZqN01wuK775OX66nl4m48eb-6GF6O8FAO2yA3XteOV8EZ6rUupPFeuliU3vsY_eKO4dKJWJZVaImkq8KwWnnGtcG6xT85WvvPYfnSQFnaGS8B06hpou2S5YoUcFLgqoqf_0EnbxQans4IKITn6MaT4iipjm1KE2s4xEhe_LKN2mbb9Tdsu07brtFF0srbu_AyqjeQvWwSOV0AAgE3bYEcVhfgB1hyC-A</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ye, Shuo</creator><creator>Peng, Qinmu</creator><creator>Sun, Wenju</creator><creator>Xu, Jiamiao</creator><creator>Wang, Yu</creator><creator>You, Xinge</creator><creator>Cheung, Yiu-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0607-1777</orcidid><orcidid>https://orcid.org/0000-0003-4863-5681</orcidid><orcidid>https://orcid.org/0000-0001-7629-4648</orcidid></search><sort><creationdate>20240401</creationdate><title>Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization</title><author>Ye, Shuo ; Peng, Qinmu ; Sun, Wenju ; Xu, Jiamiao ; Wang, Yu ; You, Xinge ; Cheung, Yiu-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-928fa2d3b96b88c67b27af6c29bf88ceb9726a3f7c0686a2d9deb1f3b12871073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Deep hypersphere embedding</topic><topic>Deep learning</topic><topic>discriminative localization</topic><topic>Embedding</topic><topic>Feature extraction</topic><topic>fine-grained visual categorization (FGVC)</topic><topic>Hyperspheres</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Manuals</topic><topic>Modules</topic><topic>Training</topic><topic>Visual discrimination</topic><topic>Visualization</topic><topic>weakly supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shuo</creatorcontrib><creatorcontrib>Peng, Qinmu</creatorcontrib><creatorcontrib>Sun, Wenju</creatorcontrib><creatorcontrib>Xu, Jiamiao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>You, Xinge</creatorcontrib><creatorcontrib>Cheung, Yiu-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Shuo</au><au>Peng, Qinmu</au><au>Sun, Wenju</au><au>Xu, Jiamiao</au><au>Wang, Yu</au><au>You, Xinge</au><au>Cheung, Yiu-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>5092</spage><epage>5102</epage><pages>5092-5102</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Despite the great success of the existing work in fine-grained visual categorization (FGVC), there are still several unsolved challenges, e.g., poor interpretation and vagueness contribution. To circumvent this drawback, motivated by the hypersphere embedding method, we propose a discriminative suprasphere embedding (DSE) framework, which can provide intuitive geometric interpretation and effectively extract discriminative features. Specifically, DSE consists of three modules. The first module is a suprasphere embedding (SE) block, which learns discriminative information by emphasizing weight and phase. The second module is a phase activation map (PAM) used to analyze the contribution of local descriptors to the suprasphere feature representation, which uniformly highlights the object region and exhibits remarkable object localization capability. The last module is a class contribution map (CCM), which quantitatively analyzes the network classification decision and provides insight into the domain knowledge about classified objects. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our proposed method in comparison with state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36107889</pmid><doi>10.1109/TNNLS.2022.3202534</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0607-1777</orcidid><orcidid>https://orcid.org/0000-0003-4863-5681</orcidid><orcidid>https://orcid.org/0000-0001-7629-4648</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-04, Vol.35 (4), p.5092-5102
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2714654649
source IEEE Electronic Library (IEL)
subjects Classification
Data mining
Decision analysis
Deep hypersphere embedding
Deep learning
discriminative localization
Embedding
Feature extraction
fine-grained visual categorization (FGVC)
Hyperspheres
Localization
Location awareness
Manuals
Modules
Training
Visual discrimination
Visualization
weakly supervised learning
title Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminative%20Suprasphere%20Embedding%20for%20Fine-Grained%20Visual%20Categorization&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Ye,%20Shuo&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=5092&rft.epage=5102&rft.pages=5092-5102&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3202534&rft_dat=%3Cproquest_RIE%3E2714654649%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033621071&rft_id=info:pmid/36107889&rft_ieee_id=9893744&rfr_iscdi=true