Prioritizing Virtual Screening with Interpretable Interaction Fingerprints
Machine learning-based drug discovery success depends on molecular representation. Yet traditional molecular fingerprints omit both the protein and pointers back to structural information that would enable better model interpretability. Therefore, we propose LUNA, a Python 3 toolkit that calculates...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2022-09, Vol.62 (18), p.4300-4318 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4318 |
---|---|
container_issue | 18 |
container_start_page | 4300 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Fassio, Alexandre V. Shub, Laura Ponzoni, Luca McKinley, Jessica O’Meara, Matthew J. Ferreira, Rafaela S. Keiser, Michael J. de Melo Minardi, Raquel C. |
description | Machine learning-based drug discovery success depends on molecular representation. Yet traditional molecular fingerprints omit both the protein and pointers back to structural information that would enable better model interpretability. Therefore, we propose LUNA, a Python 3 toolkit that calculates and encodes protein–ligand interactions into new hashed fingerprints inspired by Extended Connectivity FingerPrint (ECFP): EIFP (Extended Interaction FingerPrint), FIFP (Functional Interaction FingerPrint), and Hybrid Interaction FingerPrint (HIFP). LUNA also provides visual strategies to make the fingerprints interpretable. We performed three major experiments exploring the fingerprints’ use. First, we trained machine learning models to reproduce DOCK3.7 scores using 1 million docked Dopamine D4 complexes. We found that EIFP-4,096 performed (R 2 = 0.61) superior to related molecular and interaction fingerprints. Second, we used LUNA to support interpretable machine learning models. Finally, we demonstrate that interaction fingerprints can accurately identify similarities across molecular complexes that other fingerprints overlook. Hence, we envision LUNA and its interface fingerprints as promising methods for machine learning-based virtual screening campaigns. LUNA is freely available at https://github.com/keiserlab/LUNA. |
doi_str_mv | 10.1021/acs.jcim.2c00695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714390374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718383777</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-9738fb67511791215d8e97795b8ee5084f14479f1bb0f0410f99fd497f0551143</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwUvHux8aZqmOcpwOhko-ANvIc0SzejamaSI_vWmdrsInt6vz_fx3hehUwwTDBm-lMpPVsquJ5kCKDjdQyNMc57yAl73dznlxSE68n4FQAgvshG6e3C2dTbYb9u8JS_WhU7WyaNyWjd959OG92TeBO02TgdZ1XqopAq2bZJZZPqRbYI_RgdG1l6fbOMYPc-un6a36eL-Zj69WqSSlCSknJHSVAWjGDOOM0yXpeaMcVqVWlMoc4PznHGDqwoM5BgM52aZc2aARk1Oxuh82Ltx7UenfRBr65Wua9notvMiYxHiQFiPnv1BV23nmnhdT5XxHsZYpGCglGu9d9qI-NBaui-BQfTmimiu6M0VW3Oj5GKQ_E52O__FfwBannzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718383777</pqid></control><display><type>article</type><title>Prioritizing Virtual Screening with Interpretable Interaction Fingerprints</title><source>ACS Publications</source><creator>Fassio, Alexandre V. ; Shub, Laura ; Ponzoni, Luca ; McKinley, Jessica ; O’Meara, Matthew J. ; Ferreira, Rafaela S. ; Keiser, Michael J. ; de Melo Minardi, Raquel C.</creator><creatorcontrib>Fassio, Alexandre V. ; Shub, Laura ; Ponzoni, Luca ; McKinley, Jessica ; O’Meara, Matthew J. ; Ferreira, Rafaela S. ; Keiser, Michael J. ; de Melo Minardi, Raquel C.</creatorcontrib><description>Machine learning-based drug discovery success depends on molecular representation. Yet traditional molecular fingerprints omit both the protein and pointers back to structural information that would enable better model interpretability. Therefore, we propose LUNA, a Python 3 toolkit that calculates and encodes protein–ligand interactions into new hashed fingerprints inspired by Extended Connectivity FingerPrint (ECFP): EIFP (Extended Interaction FingerPrint), FIFP (Functional Interaction FingerPrint), and Hybrid Interaction FingerPrint (HIFP). LUNA also provides visual strategies to make the fingerprints interpretable. We performed three major experiments exploring the fingerprints’ use. First, we trained machine learning models to reproduce DOCK3.7 scores using 1 million docked Dopamine D4 complexes. We found that EIFP-4,096 performed (R 2 = 0.61) superior to related molecular and interaction fingerprints. Second, we used LUNA to support interpretable machine learning models. Finally, we demonstrate that interaction fingerprints can accurately identify similarities across molecular complexes that other fingerprints overlook. Hence, we envision LUNA and its interface fingerprints as promising methods for machine learning-based virtual screening campaigns. LUNA is freely available at https://github.com/keiserlab/LUNA.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00695</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Chemical fingerprinting ; Dopamine ; Machine learning ; Machine Learning and Deep Learning ; Proteins ; Screening</subject><ispartof>Journal of chemical information and modeling, 2022-09, Vol.62 (18), p.4300-4318</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 26, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-9738fb67511791215d8e97795b8ee5084f14479f1bb0f0410f99fd497f0551143</citedby><cites>FETCH-LOGICAL-a383t-9738fb67511791215d8e97795b8ee5084f14479f1bb0f0410f99fd497f0551143</cites><orcidid>0000-0003-0211-0396 ; 0000-0001-5190-100X ; 0000-0002-2182-4709 ; 0000-0002-3128-5331 ; 0000-0002-1240-2192 ; 0000-0001-8125-582X ; 0000-0002-8786-915X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00695$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00695$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Fassio, Alexandre V.</creatorcontrib><creatorcontrib>Shub, Laura</creatorcontrib><creatorcontrib>Ponzoni, Luca</creatorcontrib><creatorcontrib>McKinley, Jessica</creatorcontrib><creatorcontrib>O’Meara, Matthew J.</creatorcontrib><creatorcontrib>Ferreira, Rafaela S.</creatorcontrib><creatorcontrib>Keiser, Michael J.</creatorcontrib><creatorcontrib>de Melo Minardi, Raquel C.</creatorcontrib><title>Prioritizing Virtual Screening with Interpretable Interaction Fingerprints</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Machine learning-based drug discovery success depends on molecular representation. Yet traditional molecular fingerprints omit both the protein and pointers back to structural information that would enable better model interpretability. Therefore, we propose LUNA, a Python 3 toolkit that calculates and encodes protein–ligand interactions into new hashed fingerprints inspired by Extended Connectivity FingerPrint (ECFP): EIFP (Extended Interaction FingerPrint), FIFP (Functional Interaction FingerPrint), and Hybrid Interaction FingerPrint (HIFP). LUNA also provides visual strategies to make the fingerprints interpretable. We performed three major experiments exploring the fingerprints’ use. First, we trained machine learning models to reproduce DOCK3.7 scores using 1 million docked Dopamine D4 complexes. We found that EIFP-4,096 performed (R 2 = 0.61) superior to related molecular and interaction fingerprints. Second, we used LUNA to support interpretable machine learning models. Finally, we demonstrate that interaction fingerprints can accurately identify similarities across molecular complexes that other fingerprints overlook. Hence, we envision LUNA and its interface fingerprints as promising methods for machine learning-based virtual screening campaigns. LUNA is freely available at https://github.com/keiserlab/LUNA.</description><subject>Chemical fingerprinting</subject><subject>Dopamine</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Proteins</subject><subject>Screening</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwUvHux8aZqmOcpwOhko-ANvIc0SzejamaSI_vWmdrsInt6vz_fx3hehUwwTDBm-lMpPVsquJ5kCKDjdQyNMc57yAl73dznlxSE68n4FQAgvshG6e3C2dTbYb9u8JS_WhU7WyaNyWjd959OG92TeBO02TgdZ1XqopAq2bZJZZPqRbYI_RgdG1l6fbOMYPc-un6a36eL-Zj69WqSSlCSknJHSVAWjGDOOM0yXpeaMcVqVWlMoc4PznHGDqwoM5BgM52aZc2aARk1Oxuh82Ltx7UenfRBr65Wua9notvMiYxHiQFiPnv1BV23nmnhdT5XxHsZYpGCglGu9d9qI-NBaui-BQfTmimiu6M0VW3Oj5GKQ_E52O__FfwBannzQ</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Fassio, Alexandre V.</creator><creator>Shub, Laura</creator><creator>Ponzoni, Luca</creator><creator>McKinley, Jessica</creator><creator>O’Meara, Matthew J.</creator><creator>Ferreira, Rafaela S.</creator><creator>Keiser, Michael J.</creator><creator>de Melo Minardi, Raquel C.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0211-0396</orcidid><orcidid>https://orcid.org/0000-0001-5190-100X</orcidid><orcidid>https://orcid.org/0000-0002-2182-4709</orcidid><orcidid>https://orcid.org/0000-0002-3128-5331</orcidid><orcidid>https://orcid.org/0000-0002-1240-2192</orcidid><orcidid>https://orcid.org/0000-0001-8125-582X</orcidid><orcidid>https://orcid.org/0000-0002-8786-915X</orcidid></search><sort><creationdate>20220926</creationdate><title>Prioritizing Virtual Screening with Interpretable Interaction Fingerprints</title><author>Fassio, Alexandre V. ; Shub, Laura ; Ponzoni, Luca ; McKinley, Jessica ; O’Meara, Matthew J. ; Ferreira, Rafaela S. ; Keiser, Michael J. ; de Melo Minardi, Raquel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-9738fb67511791215d8e97795b8ee5084f14479f1bb0f0410f99fd497f0551143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical fingerprinting</topic><topic>Dopamine</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Proteins</topic><topic>Screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassio, Alexandre V.</creatorcontrib><creatorcontrib>Shub, Laura</creatorcontrib><creatorcontrib>Ponzoni, Luca</creatorcontrib><creatorcontrib>McKinley, Jessica</creatorcontrib><creatorcontrib>O’Meara, Matthew J.</creatorcontrib><creatorcontrib>Ferreira, Rafaela S.</creatorcontrib><creatorcontrib>Keiser, Michael J.</creatorcontrib><creatorcontrib>de Melo Minardi, Raquel C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassio, Alexandre V.</au><au>Shub, Laura</au><au>Ponzoni, Luca</au><au>McKinley, Jessica</au><au>O’Meara, Matthew J.</au><au>Ferreira, Rafaela S.</au><au>Keiser, Michael J.</au><au>de Melo Minardi, Raquel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prioritizing Virtual Screening with Interpretable Interaction Fingerprints</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-09-26</date><risdate>2022</risdate><volume>62</volume><issue>18</issue><spage>4300</spage><epage>4318</epage><pages>4300-4318</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Machine learning-based drug discovery success depends on molecular representation. Yet traditional molecular fingerprints omit both the protein and pointers back to structural information that would enable better model interpretability. Therefore, we propose LUNA, a Python 3 toolkit that calculates and encodes protein–ligand interactions into new hashed fingerprints inspired by Extended Connectivity FingerPrint (ECFP): EIFP (Extended Interaction FingerPrint), FIFP (Functional Interaction FingerPrint), and Hybrid Interaction FingerPrint (HIFP). LUNA also provides visual strategies to make the fingerprints interpretable. We performed three major experiments exploring the fingerprints’ use. First, we trained machine learning models to reproduce DOCK3.7 scores using 1 million docked Dopamine D4 complexes. We found that EIFP-4,096 performed (R 2 = 0.61) superior to related molecular and interaction fingerprints. Second, we used LUNA to support interpretable machine learning models. Finally, we demonstrate that interaction fingerprints can accurately identify similarities across molecular complexes that other fingerprints overlook. Hence, we envision LUNA and its interface fingerprints as promising methods for machine learning-based virtual screening campaigns. LUNA is freely available at https://github.com/keiserlab/LUNA.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.2c00695</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0211-0396</orcidid><orcidid>https://orcid.org/0000-0001-5190-100X</orcidid><orcidid>https://orcid.org/0000-0002-2182-4709</orcidid><orcidid>https://orcid.org/0000-0002-3128-5331</orcidid><orcidid>https://orcid.org/0000-0002-1240-2192</orcidid><orcidid>https://orcid.org/0000-0001-8125-582X</orcidid><orcidid>https://orcid.org/0000-0002-8786-915X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-09, Vol.62 (18), p.4300-4318 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2714390374 |
source | ACS Publications |
subjects | Chemical fingerprinting Dopamine Machine learning Machine Learning and Deep Learning Proteins Screening |
title | Prioritizing Virtual Screening with Interpretable Interaction Fingerprints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prioritizing%20Virtual%20Screening%20with%20Interpretable%20Interaction%20Fingerprints&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Fassio,%20Alexandre%20V.&rft.date=2022-09-26&rft.volume=62&rft.issue=18&rft.spage=4300&rft.epage=4318&rft.pages=4300-4318&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00695&rft_dat=%3Cproquest_cross%3E2718383777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718383777&rft_id=info:pmid/&rfr_iscdi=true |