Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds

Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2022-11, Vol.43 (16), p.4984-4994
Hauptverfasser: Rosberg, Aylin, Tuulari, Jetro J., Kumpulainen, Venla, Lukkarinen, Minna, Pulli, Elmo P., Silver, Eero, Copeland, Anni, Saukko, Ekaterina, Saunavaara, Jani, Lewis, John D., Karlsson, Linnea, Karlsson, Hasse, Merisaari, Harri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4994
container_issue 16
container_start_page 4984
container_title Human brain mapping
container_volume 43
creator Rosberg, Aylin
Tuulari, Jetro J.
Kumpulainen, Venla
Lukkarinen, Minna
Pulli, Elmo P.
Silver, Eero
Copeland, Anni
Saukko, Ekaterina
Saunavaara, Jani
Lewis, John D.
Karlsson, Linnea
Karlsson, Hasse
Merisaari, Harri
description Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability (
doi_str_mv 10.1002/hbm.26064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714063803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726160691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-456c856c57922b4a0df9fcbe03e0c7a443946dd9e0a05024e28cd2f307f07b553</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EolAYeAEUiQWGtNeOE8cjVECRimAoc-QkdnGVn2InQtn6CEi8YZ8ElxQGJIar7w5Hn-49CJ1hGGEAMn5NyxGJIKJ76AgDZz5gHuxv9yj0OWV4gI6tXQJgHAI-RIMgAh5Txo7Q81zaZrP-NLJxi2dkoUWqC910Xq28XCvVWl1XXiMrWxtPl2Khq4VnM1EIYz1deeFm_dFJYVzURW5P0IEShZWnuxyil7vb-WTqz57uHybXMz8jLKY-DaMsdhMyTkhKBeSKqyyVEEjImKA04DTKcy5BQAiEShJnOVEBMAUsDcNgiC773pWp31p3e1Jqm8miEJWsW5sQhilEQQyBQy_-oMu6NZW7zlEkws4cx4666qnM1NYaqZKVce-aLsGQbDUnTnPyrdmx57vGNi1l_kv-eHXAuAfedSG7_5uS6c1jX_kFcaiIUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726160691</pqid></control><display><type>article</type><title>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rosberg, Aylin ; Tuulari, Jetro J. ; Kumpulainen, Venla ; Lukkarinen, Minna ; Pulli, Elmo P. ; Silver, Eero ; Copeland, Anni ; Saukko, Ekaterina ; Saunavaara, Jani ; Lewis, John D. ; Karlsson, Linnea ; Karlsson, Hasse ; Merisaari, Harri</creator><creatorcontrib>Rosberg, Aylin ; Tuulari, Jetro J. ; Kumpulainen, Venla ; Lukkarinen, Minna ; Pulli, Elmo P. ; Silver, Eero ; Copeland, Anni ; Saukko, Ekaterina ; Saunavaara, Jani ; Lewis, John D. ; Karlsson, Linnea ; Karlsson, Hasse ; Merisaari, Harri</creatorcontrib><description>Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) &gt; 0.75) reliability for most of the ROIs and an overall low variability (&lt;10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (&lt;12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies. We investigated the intrascan test‐retest repeatability of diffusion tensor imaging scalars in 5‐year‐old children with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest and a voxelwise analysis after careful quality control, tensor fitting, and tract‐based spatial statistics. The results of both pipelines with both analysis pipelines yielded at least good reliability and an overall low variability.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26064</identifier><identifier>PMID: 36098477</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Age ; analysis workflows ; Anesthesia ; Anisotropy ; Brain - diagnostic imaging ; Brain research ; Child ; Child, Preschool ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Cross-Sectional Studies ; Data analysis ; Diffusion rate ; Diffusion Tensor Imaging - methods ; Diffusivity ; Humans ; ICC ; Image processing ; Longitudinal studies ; Magnetic resonance imaging ; Mathematical analysis ; Neuroimaging ; Outliers (statistics) ; pediatric DTI ; Pediatrics ; Population studies ; Quality control ; Reliability ; Reproducibility ; Reproducibility of Results ; Scalars ; Scanners ; Software ; Spatial data ; Statistical analysis ; TBSS ; Tensors ; test–retest repeatability</subject><ispartof>Human brain mapping, 2022-11, Vol.43 (16), p.4984-4994</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2784-456c856c57922b4a0df9fcbe03e0c7a443946dd9e0a05024e28cd2f307f07b553</cites><orcidid>0000-0002-0832-7396 ; 0000-0002-6482-9008 ; 0000-0002-8515-5399 ; 0000-0002-4587-4882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhbm.26064$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhbm.26064$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36098477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosberg, Aylin</creatorcontrib><creatorcontrib>Tuulari, Jetro J.</creatorcontrib><creatorcontrib>Kumpulainen, Venla</creatorcontrib><creatorcontrib>Lukkarinen, Minna</creatorcontrib><creatorcontrib>Pulli, Elmo P.</creatorcontrib><creatorcontrib>Silver, Eero</creatorcontrib><creatorcontrib>Copeland, Anni</creatorcontrib><creatorcontrib>Saukko, Ekaterina</creatorcontrib><creatorcontrib>Saunavaara, Jani</creatorcontrib><creatorcontrib>Lewis, John D.</creatorcontrib><creatorcontrib>Karlsson, Linnea</creatorcontrib><creatorcontrib>Karlsson, Hasse</creatorcontrib><creatorcontrib>Merisaari, Harri</creatorcontrib><title>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) &gt; 0.75) reliability for most of the ROIs and an overall low variability (&lt;10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (&lt;12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies. We investigated the intrascan test‐retest repeatability of diffusion tensor imaging scalars in 5‐year‐old children with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest and a voxelwise analysis after careful quality control, tensor fitting, and tract‐based spatial statistics. The results of both pipelines with both analysis pipelines yielded at least good reliability and an overall low variability.</description><subject>Age</subject><subject>analysis workflows</subject><subject>Anesthesia</subject><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cross-Sectional Studies</subject><subject>Data analysis</subject><subject>Diffusion rate</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Diffusivity</subject><subject>Humans</subject><subject>ICC</subject><subject>Image processing</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Neuroimaging</subject><subject>Outliers (statistics)</subject><subject>pediatric DTI</subject><subject>Pediatrics</subject><subject>Population studies</subject><subject>Quality control</subject><subject>Reliability</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Scalars</subject><subject>Scanners</subject><subject>Software</subject><subject>Spatial data</subject><subject>Statistical analysis</subject><subject>TBSS</subject><subject>Tensors</subject><subject>test–retest repeatability</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1OwzAURi0EolAYeAEUiQWGtNeOE8cjVECRimAoc-QkdnGVn2InQtn6CEi8YZ8ElxQGJIar7w5Hn-49CJ1hGGEAMn5NyxGJIKJ76AgDZz5gHuxv9yj0OWV4gI6tXQJgHAI-RIMgAh5Txo7Q81zaZrP-NLJxi2dkoUWqC910Xq28XCvVWl1XXiMrWxtPl2Khq4VnM1EIYz1deeFm_dFJYVzURW5P0IEShZWnuxyil7vb-WTqz57uHybXMz8jLKY-DaMsdhMyTkhKBeSKqyyVEEjImKA04DTKcy5BQAiEShJnOVEBMAUsDcNgiC773pWp31p3e1Jqm8miEJWsW5sQhilEQQyBQy_-oMu6NZW7zlEkws4cx4666qnM1NYaqZKVce-aLsGQbDUnTnPyrdmx57vGNi1l_kv-eHXAuAfedSG7_5uS6c1jX_kFcaiIUQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Rosberg, Aylin</creator><creator>Tuulari, Jetro J.</creator><creator>Kumpulainen, Venla</creator><creator>Lukkarinen, Minna</creator><creator>Pulli, Elmo P.</creator><creator>Silver, Eero</creator><creator>Copeland, Anni</creator><creator>Saukko, Ekaterina</creator><creator>Saunavaara, Jani</creator><creator>Lewis, John D.</creator><creator>Karlsson, Linnea</creator><creator>Karlsson, Hasse</creator><creator>Merisaari, Harri</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0832-7396</orcidid><orcidid>https://orcid.org/0000-0002-6482-9008</orcidid><orcidid>https://orcid.org/0000-0002-8515-5399</orcidid><orcidid>https://orcid.org/0000-0002-4587-4882</orcidid></search><sort><creationdate>202211</creationdate><title>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</title><author>Rosberg, Aylin ; Tuulari, Jetro J. ; Kumpulainen, Venla ; Lukkarinen, Minna ; Pulli, Elmo P. ; Silver, Eero ; Copeland, Anni ; Saukko, Ekaterina ; Saunavaara, Jani ; Lewis, John D. ; Karlsson, Linnea ; Karlsson, Hasse ; Merisaari, Harri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-456c856c57922b4a0df9fcbe03e0c7a443946dd9e0a05024e28cd2f307f07b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>analysis workflows</topic><topic>Anesthesia</topic><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cross-Sectional Studies</topic><topic>Data analysis</topic><topic>Diffusion rate</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Diffusivity</topic><topic>Humans</topic><topic>ICC</topic><topic>Image processing</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Neuroimaging</topic><topic>Outliers (statistics)</topic><topic>pediatric DTI</topic><topic>Pediatrics</topic><topic>Population studies</topic><topic>Quality control</topic><topic>Reliability</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Scalars</topic><topic>Scanners</topic><topic>Software</topic><topic>Spatial data</topic><topic>Statistical analysis</topic><topic>TBSS</topic><topic>Tensors</topic><topic>test–retest repeatability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosberg, Aylin</creatorcontrib><creatorcontrib>Tuulari, Jetro J.</creatorcontrib><creatorcontrib>Kumpulainen, Venla</creatorcontrib><creatorcontrib>Lukkarinen, Minna</creatorcontrib><creatorcontrib>Pulli, Elmo P.</creatorcontrib><creatorcontrib>Silver, Eero</creatorcontrib><creatorcontrib>Copeland, Anni</creatorcontrib><creatorcontrib>Saukko, Ekaterina</creatorcontrib><creatorcontrib>Saunavaara, Jani</creatorcontrib><creatorcontrib>Lewis, John D.</creatorcontrib><creatorcontrib>Karlsson, Linnea</creatorcontrib><creatorcontrib>Karlsson, Hasse</creatorcontrib><creatorcontrib>Merisaari, Harri</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosberg, Aylin</au><au>Tuulari, Jetro J.</au><au>Kumpulainen, Venla</au><au>Lukkarinen, Minna</au><au>Pulli, Elmo P.</au><au>Silver, Eero</au><au>Copeland, Anni</au><au>Saukko, Ekaterina</au><au>Saunavaara, Jani</au><au>Lewis, John D.</au><au>Karlsson, Linnea</au><au>Karlsson, Hasse</au><au>Merisaari, Harri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2022-11</date><risdate>2022</risdate><volume>43</volume><issue>16</issue><spage>4984</spage><epage>4994</epage><pages>4984-4994</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) &gt; 0.75) reliability for most of the ROIs and an overall low variability (&lt;10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (&lt;12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies. We investigated the intrascan test‐retest repeatability of diffusion tensor imaging scalars in 5‐year‐old children with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest and a voxelwise analysis after careful quality control, tensor fitting, and tract‐based spatial statistics. The results of both pipelines with both analysis pipelines yielded at least good reliability and an overall low variability.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36098477</pmid><doi>10.1002/hbm.26064</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0832-7396</orcidid><orcidid>https://orcid.org/0000-0002-6482-9008</orcidid><orcidid>https://orcid.org/0000-0002-8515-5399</orcidid><orcidid>https://orcid.org/0000-0002-4587-4882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2022-11, Vol.43 (16), p.4984-4994
issn 1065-9471
1097-0193
language eng
recordid cdi_proquest_miscellaneous_2714063803
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Age
analysis workflows
Anesthesia
Anisotropy
Brain - diagnostic imaging
Brain research
Child
Child, Preschool
Correlation analysis
Correlation coefficient
Correlation coefficients
Cross-Sectional Studies
Data analysis
Diffusion rate
Diffusion Tensor Imaging - methods
Diffusivity
Humans
ICC
Image processing
Longitudinal studies
Magnetic resonance imaging
Mathematical analysis
Neuroimaging
Outliers (statistics)
pediatric DTI
Pediatrics
Population studies
Quality control
Reliability
Reproducibility
Reproducibility of Results
Scalars
Scanners
Software
Spatial data
Statistical analysis
TBSS
Tensors
test–retest repeatability
title Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%E2%80%93retest%20reliability%20of%20diffusion%20tensor%20imaging%20scalars%20in%205%E2%80%90year%E2%80%90olds&rft.jtitle=Human%20brain%20mapping&rft.au=Rosberg,%20Aylin&rft.date=2022-11&rft.volume=43&rft.issue=16&rft.spage=4984&rft.epage=4994&rft.pages=4984-4994&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26064&rft_dat=%3Cproquest_cross%3E2726160691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726160691&rft_id=info:pmid/36098477&rfr_iscdi=true