Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds
Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especi...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2022-11, Vol.43 (16), p.4984-4994 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4994 |
---|---|
container_issue | 16 |
container_start_page | 4984 |
container_title | Human brain mapping |
container_volume | 43 |
creator | Rosberg, Aylin Tuulari, Jetro J. Kumpulainen, Venla Lukkarinen, Minna Pulli, Elmo P. Silver, Eero Copeland, Anni Saukko, Ekaterina Saunavaara, Jani Lewis, John D. Karlsson, Linnea Karlsson, Hasse Merisaari, Harri |
description | Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability ( |
doi_str_mv | 10.1002/hbm.26064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714063803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726160691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-456c856c57922b4a0df9fcbe03e0c7a443946dd9e0a05024e28cd2f307f07b553</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EolAYeAEUiQWGtNeOE8cjVECRimAoc-QkdnGVn2InQtn6CEi8YZ8ElxQGJIar7w5Hn-49CJ1hGGEAMn5NyxGJIKJ76AgDZz5gHuxv9yj0OWV4gI6tXQJgHAI-RIMgAh5Txo7Q81zaZrP-NLJxi2dkoUWqC910Xq28XCvVWl1XXiMrWxtPl2Khq4VnM1EIYz1deeFm_dFJYVzURW5P0IEShZWnuxyil7vb-WTqz57uHybXMz8jLKY-DaMsdhMyTkhKBeSKqyyVEEjImKA04DTKcy5BQAiEShJnOVEBMAUsDcNgiC773pWp31p3e1Jqm8miEJWsW5sQhilEQQyBQy_-oMu6NZW7zlEkws4cx4666qnM1NYaqZKVce-aLsGQbDUnTnPyrdmx57vGNi1l_kv-eHXAuAfedSG7_5uS6c1jX_kFcaiIUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726160691</pqid></control><display><type>article</type><title>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rosberg, Aylin ; Tuulari, Jetro J. ; Kumpulainen, Venla ; Lukkarinen, Minna ; Pulli, Elmo P. ; Silver, Eero ; Copeland, Anni ; Saukko, Ekaterina ; Saunavaara, Jani ; Lewis, John D. ; Karlsson, Linnea ; Karlsson, Hasse ; Merisaari, Harri</creator><creatorcontrib>Rosberg, Aylin ; Tuulari, Jetro J. ; Kumpulainen, Venla ; Lukkarinen, Minna ; Pulli, Elmo P. ; Silver, Eero ; Copeland, Anni ; Saukko, Ekaterina ; Saunavaara, Jani ; Lewis, John D. ; Karlsson, Linnea ; Karlsson, Hasse ; Merisaari, Harri</creatorcontrib><description>Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability (<10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (<12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies.
We investigated the intrascan test‐retest repeatability of diffusion tensor imaging scalars in 5‐year‐old children with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest and a voxelwise analysis after careful quality control, tensor fitting, and tract‐based spatial statistics. The results of both pipelines with both analysis pipelines yielded at least good reliability and an overall low variability.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26064</identifier><identifier>PMID: 36098477</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Age ; analysis workflows ; Anesthesia ; Anisotropy ; Brain - diagnostic imaging ; Brain research ; Child ; Child, Preschool ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Cross-Sectional Studies ; Data analysis ; Diffusion rate ; Diffusion Tensor Imaging - methods ; Diffusivity ; Humans ; ICC ; Image processing ; Longitudinal studies ; Magnetic resonance imaging ; Mathematical analysis ; Neuroimaging ; Outliers (statistics) ; pediatric DTI ; Pediatrics ; Population studies ; Quality control ; Reliability ; Reproducibility ; Reproducibility of Results ; Scalars ; Scanners ; Software ; Spatial data ; Statistical analysis ; TBSS ; Tensors ; test–retest repeatability</subject><ispartof>Human brain mapping, 2022-11, Vol.43 (16), p.4984-4994</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2784-456c856c57922b4a0df9fcbe03e0c7a443946dd9e0a05024e28cd2f307f07b553</cites><orcidid>0000-0002-0832-7396 ; 0000-0002-6482-9008 ; 0000-0002-8515-5399 ; 0000-0002-4587-4882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhbm.26064$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhbm.26064$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36098477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosberg, Aylin</creatorcontrib><creatorcontrib>Tuulari, Jetro J.</creatorcontrib><creatorcontrib>Kumpulainen, Venla</creatorcontrib><creatorcontrib>Lukkarinen, Minna</creatorcontrib><creatorcontrib>Pulli, Elmo P.</creatorcontrib><creatorcontrib>Silver, Eero</creatorcontrib><creatorcontrib>Copeland, Anni</creatorcontrib><creatorcontrib>Saukko, Ekaterina</creatorcontrib><creatorcontrib>Saunavaara, Jani</creatorcontrib><creatorcontrib>Lewis, John D.</creatorcontrib><creatorcontrib>Karlsson, Linnea</creatorcontrib><creatorcontrib>Karlsson, Hasse</creatorcontrib><creatorcontrib>Merisaari, Harri</creatorcontrib><title>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability (<10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (<12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies.
We investigated the intrascan test‐retest repeatability of diffusion tensor imaging scalars in 5‐year‐old children with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest and a voxelwise analysis after careful quality control, tensor fitting, and tract‐based spatial statistics. The results of both pipelines with both analysis pipelines yielded at least good reliability and an overall low variability.</description><subject>Age</subject><subject>analysis workflows</subject><subject>Anesthesia</subject><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cross-Sectional Studies</subject><subject>Data analysis</subject><subject>Diffusion rate</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Diffusivity</subject><subject>Humans</subject><subject>ICC</subject><subject>Image processing</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Neuroimaging</subject><subject>Outliers (statistics)</subject><subject>pediatric DTI</subject><subject>Pediatrics</subject><subject>Population studies</subject><subject>Quality control</subject><subject>Reliability</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Scalars</subject><subject>Scanners</subject><subject>Software</subject><subject>Spatial data</subject><subject>Statistical analysis</subject><subject>TBSS</subject><subject>Tensors</subject><subject>test–retest repeatability</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1OwzAURi0EolAYeAEUiQWGtNeOE8cjVECRimAoc-QkdnGVn2InQtn6CEi8YZ8ElxQGJIar7w5Hn-49CJ1hGGEAMn5NyxGJIKJ76AgDZz5gHuxv9yj0OWV4gI6tXQJgHAI-RIMgAh5Txo7Q81zaZrP-NLJxi2dkoUWqC910Xq28XCvVWl1XXiMrWxtPl2Khq4VnM1EIYz1deeFm_dFJYVzURW5P0IEShZWnuxyil7vb-WTqz57uHybXMz8jLKY-DaMsdhMyTkhKBeSKqyyVEEjImKA04DTKcy5BQAiEShJnOVEBMAUsDcNgiC773pWp31p3e1Jqm8miEJWsW5sQhilEQQyBQy_-oMu6NZW7zlEkws4cx4666qnM1NYaqZKVce-aLsGQbDUnTnPyrdmx57vGNi1l_kv-eHXAuAfedSG7_5uS6c1jX_kFcaiIUQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Rosberg, Aylin</creator><creator>Tuulari, Jetro J.</creator><creator>Kumpulainen, Venla</creator><creator>Lukkarinen, Minna</creator><creator>Pulli, Elmo P.</creator><creator>Silver, Eero</creator><creator>Copeland, Anni</creator><creator>Saukko, Ekaterina</creator><creator>Saunavaara, Jani</creator><creator>Lewis, John D.</creator><creator>Karlsson, Linnea</creator><creator>Karlsson, Hasse</creator><creator>Merisaari, Harri</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0832-7396</orcidid><orcidid>https://orcid.org/0000-0002-6482-9008</orcidid><orcidid>https://orcid.org/0000-0002-8515-5399</orcidid><orcidid>https://orcid.org/0000-0002-4587-4882</orcidid></search><sort><creationdate>202211</creationdate><title>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</title><author>Rosberg, Aylin ; Tuulari, Jetro J. ; Kumpulainen, Venla ; Lukkarinen, Minna ; Pulli, Elmo P. ; Silver, Eero ; Copeland, Anni ; Saukko, Ekaterina ; Saunavaara, Jani ; Lewis, John D. ; Karlsson, Linnea ; Karlsson, Hasse ; Merisaari, Harri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-456c856c57922b4a0df9fcbe03e0c7a443946dd9e0a05024e28cd2f307f07b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>analysis workflows</topic><topic>Anesthesia</topic><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cross-Sectional Studies</topic><topic>Data analysis</topic><topic>Diffusion rate</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Diffusivity</topic><topic>Humans</topic><topic>ICC</topic><topic>Image processing</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Neuroimaging</topic><topic>Outliers (statistics)</topic><topic>pediatric DTI</topic><topic>Pediatrics</topic><topic>Population studies</topic><topic>Quality control</topic><topic>Reliability</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Scalars</topic><topic>Scanners</topic><topic>Software</topic><topic>Spatial data</topic><topic>Statistical analysis</topic><topic>TBSS</topic><topic>Tensors</topic><topic>test–retest repeatability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosberg, Aylin</creatorcontrib><creatorcontrib>Tuulari, Jetro J.</creatorcontrib><creatorcontrib>Kumpulainen, Venla</creatorcontrib><creatorcontrib>Lukkarinen, Minna</creatorcontrib><creatorcontrib>Pulli, Elmo P.</creatorcontrib><creatorcontrib>Silver, Eero</creatorcontrib><creatorcontrib>Copeland, Anni</creatorcontrib><creatorcontrib>Saukko, Ekaterina</creatorcontrib><creatorcontrib>Saunavaara, Jani</creatorcontrib><creatorcontrib>Lewis, John D.</creatorcontrib><creatorcontrib>Karlsson, Linnea</creatorcontrib><creatorcontrib>Karlsson, Hasse</creatorcontrib><creatorcontrib>Merisaari, Harri</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosberg, Aylin</au><au>Tuulari, Jetro J.</au><au>Kumpulainen, Venla</au><au>Lukkarinen, Minna</au><au>Pulli, Elmo P.</au><au>Silver, Eero</au><au>Copeland, Anni</au><au>Saukko, Ekaterina</au><au>Saunavaara, Jani</au><au>Lewis, John D.</au><au>Karlsson, Linnea</au><au>Karlsson, Hasse</au><au>Merisaari, Harri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2022-11</date><risdate>2022</risdate><volume>43</volume><issue>16</issue><spage>4984</spage><epage>4994</epage><pages>4984-4994</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Diffusion tensor imaging (DTI) has provided great insights into the microstructural features of the developing brain. However, DTI images are prone to several artifacts and the reliability of DTI scalars is of paramount importance for interpreting and generalizing the findings of DTI studies, especially in the younger population. In this study, we investigated the intrascan test–retest repeatability of four DTI scalars: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 5‐year‐old children (N = 67) with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest (ROI) and a voxelwise analysis after careful quality control, tensor fitting and tract‐based spatial statistics. The data had three subsets and each subset included 31, 32, or 33 directions thus a total of 96 unique uniformly distributed diffusion encoding directions per subject. The repeatability of DTI scalars was evaluated with intraclass correlation coefficient (ICC(3,1)) and the variability between test and retest subsets. The results of both pipelines yielded good to excellent (ICC(3,1) > 0.75) reliability for most of the ROIs and an overall low variability (<10%). In the voxelwise analysis, FA and RD had higher ICC(3,1) values compared to AD and MD and the variability remained low (<12%) across all scalars. Our results suggest high intrascan repeatability in pediatric DTI and lend confidence to the use of the data in future cross‐sectional and longitudinal studies.
We investigated the intrascan test‐retest repeatability of diffusion tensor imaging scalars in 5‐year‐old children with two different data preprocessing approaches: a volume censoring pipeline and an outlier replacement pipeline. We applied a region of interest and a voxelwise analysis after careful quality control, tensor fitting, and tract‐based spatial statistics. The results of both pipelines with both analysis pipelines yielded at least good reliability and an overall low variability.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36098477</pmid><doi>10.1002/hbm.26064</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0832-7396</orcidid><orcidid>https://orcid.org/0000-0002-6482-9008</orcidid><orcidid>https://orcid.org/0000-0002-8515-5399</orcidid><orcidid>https://orcid.org/0000-0002-4587-4882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2022-11, Vol.43 (16), p.4984-4994 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_proquest_miscellaneous_2714063803 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Age analysis workflows Anesthesia Anisotropy Brain - diagnostic imaging Brain research Child Child, Preschool Correlation analysis Correlation coefficient Correlation coefficients Cross-Sectional Studies Data analysis Diffusion rate Diffusion Tensor Imaging - methods Diffusivity Humans ICC Image processing Longitudinal studies Magnetic resonance imaging Mathematical analysis Neuroimaging Outliers (statistics) pediatric DTI Pediatrics Population studies Quality control Reliability Reproducibility Reproducibility of Results Scalars Scanners Software Spatial data Statistical analysis TBSS Tensors test–retest repeatability |
title | Test–retest reliability of diffusion tensor imaging scalars in 5‐year‐olds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%E2%80%93retest%20reliability%20of%20diffusion%20tensor%20imaging%20scalars%20in%205%E2%80%90year%E2%80%90olds&rft.jtitle=Human%20brain%20mapping&rft.au=Rosberg,%20Aylin&rft.date=2022-11&rft.volume=43&rft.issue=16&rft.spage=4984&rft.epage=4994&rft.pages=4984-4994&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26064&rft_dat=%3Cproquest_cross%3E2726160691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726160691&rft_id=info:pmid/36098477&rfr_iscdi=true |