Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning

Meniscus-confined electrodeposition and electrodissolution are a facile maskless approach to generate controlled surface patterns and 3D microstructures. In these processes, the solid–liquid interfacial area confined by the meniscus dictates the zone on which the electrodeposition or the electrodiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-09, Vol.14 (37), p.42586-42601
Hauptverfasser: Sahoo, Priyanka, Singhal, Richa, Sow, Pradeep Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42601
container_issue 37
container_start_page 42586
container_title ACS applied materials & interfaces
container_volume 14
creator Sahoo, Priyanka
Singhal, Richa
Sow, Pradeep Kumar
description Meniscus-confined electrodeposition and electrodissolution are a facile maskless approach to generate controlled surface patterns and 3D microstructures. In these processes, the solid–liquid interfacial area confined by the meniscus dictates the zone on which the electrodeposition or the electrodissolution occurs. In this work, we show that the process of electrodeposition or electrodissolution in a meniscus-confined droplet system can lead to dynamic spreading of the meniscus, thereby changing the solid–liquid interfacial area confined by the meniscus. Our results show that the wetting dynamics depends on the applied voltage and the type of interface underneath the droplet, specifically a smooth surface with a homogeneous solid–liquid interface or a superhydrophobic surface with a heterogeneous solid–liquid and liquid–vapor interface. It is found that both electrodissolution and electrodeposition processes induced droplet spreading in the case of a smooth surface with a homogeneous interface. However, a superhydrophobic surface with a heterogeneous interface under the droplet produced nonlinear spreading during electrodissolution and spreading inhibition during electrodeposition. The underlying mechanisms resulting in the observed behavior have been explicated. The dynamic droplet spreading could modify the dimensions of the patterns formed and hence is of immense importance to the meniscus-confined electrochemical micromachining. The findings also provide fundamental insights into the spreading behavior and wetting transitions induced by electrochemical reactions.
doi_str_mv 10.1021/acsami.2c04798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714063504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714063504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-4c56e02adc6909478e375f0db45ad40e7984c3ede276a121f685dfb94df49d743</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoWKtXzzmKsDXJZr-OUj-holA9hzR5kZRtsia7h978003dqidP8xh-82AGoXNKZpQweiVVlBs7Y4rwqqkP0IQ2nGc1K9jh7835MTqJcU1ImTNSTNDnzdallMK3Lag--HbbA152AaS27h3rIezkCZyNaojZ3DtjHegfXEPno-2td1i6P9fG6Nvh2_YGz33XQcDGB7wcgpEK8Ivsewgu_T5FR0a2Ec72OkVvd7ev84ds8Xz_OL9eZDInVZ9xVZRAmNSqbEjDqxryqjBEr3ghNSeQGnOVgwZWlZIyasq60GbVcG14oyueT9HF-LcL_mOA2ItNqgRtKx34IQpWUZ5GKcgOnY2oCj7GAEZ0wW5k2ApKxG5qMU4t9lOnwOUYSL5Y-yG41OQ_-AuDS4RH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714063504</pqid></control><display><type>article</type><title>Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning</title><source>American Chemical Society Journals</source><creator>Sahoo, Priyanka ; Singhal, Richa ; Sow, Pradeep Kumar</creator><creatorcontrib>Sahoo, Priyanka ; Singhal, Richa ; Sow, Pradeep Kumar</creatorcontrib><description>Meniscus-confined electrodeposition and electrodissolution are a facile maskless approach to generate controlled surface patterns and 3D microstructures. In these processes, the solid–liquid interfacial area confined by the meniscus dictates the zone on which the electrodeposition or the electrodissolution occurs. In this work, we show that the process of electrodeposition or electrodissolution in a meniscus-confined droplet system can lead to dynamic spreading of the meniscus, thereby changing the solid–liquid interfacial area confined by the meniscus. Our results show that the wetting dynamics depends on the applied voltage and the type of interface underneath the droplet, specifically a smooth surface with a homogeneous solid–liquid interface or a superhydrophobic surface with a heterogeneous solid–liquid and liquid–vapor interface. It is found that both electrodissolution and electrodeposition processes induced droplet spreading in the case of a smooth surface with a homogeneous interface. However, a superhydrophobic surface with a heterogeneous interface under the droplet produced nonlinear spreading during electrodissolution and spreading inhibition during electrodeposition. The underlying mechanisms resulting in the observed behavior have been explicated. The dynamic droplet spreading could modify the dimensions of the patterns formed and hence is of immense importance to the meniscus-confined electrochemical micromachining. The findings also provide fundamental insights into the spreading behavior and wetting transitions induced by electrochemical reactions.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04798</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-09, Vol.14 (37), p.42586-42601</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-4c56e02adc6909478e375f0db45ad40e7984c3ede276a121f685dfb94df49d743</citedby><cites>FETCH-LOGICAL-a307t-4c56e02adc6909478e375f0db45ad40e7984c3ede276a121f685dfb94df49d743</cites><orcidid>0000-0002-7802-8172 ; 0000-0002-8842-5606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04798$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04798$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sahoo, Priyanka</creatorcontrib><creatorcontrib>Singhal, Richa</creatorcontrib><creatorcontrib>Sow, Pradeep Kumar</creatorcontrib><title>Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Meniscus-confined electrodeposition and electrodissolution are a facile maskless approach to generate controlled surface patterns and 3D microstructures. In these processes, the solid–liquid interfacial area confined by the meniscus dictates the zone on which the electrodeposition or the electrodissolution occurs. In this work, we show that the process of electrodeposition or electrodissolution in a meniscus-confined droplet system can lead to dynamic spreading of the meniscus, thereby changing the solid–liquid interfacial area confined by the meniscus. Our results show that the wetting dynamics depends on the applied voltage and the type of interface underneath the droplet, specifically a smooth surface with a homogeneous solid–liquid interface or a superhydrophobic surface with a heterogeneous solid–liquid and liquid–vapor interface. It is found that both electrodissolution and electrodeposition processes induced droplet spreading in the case of a smooth surface with a homogeneous interface. However, a superhydrophobic surface with a heterogeneous interface under the droplet produced nonlinear spreading during electrodissolution and spreading inhibition during electrodeposition. The underlying mechanisms resulting in the observed behavior have been explicated. The dynamic droplet spreading could modify the dimensions of the patterns formed and hence is of immense importance to the meniscus-confined electrochemical micromachining. The findings also provide fundamental insights into the spreading behavior and wetting transitions induced by electrochemical reactions.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEUxIMoWKtXzzmKsDXJZr-OUj-holA9hzR5kZRtsia7h978003dqidP8xh-82AGoXNKZpQweiVVlBs7Y4rwqqkP0IQ2nGc1K9jh7835MTqJcU1ImTNSTNDnzdallMK3Lag--HbbA152AaS27h3rIezkCZyNaojZ3DtjHegfXEPno-2td1i6P9fG6Nvh2_YGz33XQcDGB7wcgpEK8Ivsewgu_T5FR0a2Ec72OkVvd7ev84ds8Xz_OL9eZDInVZ9xVZRAmNSqbEjDqxryqjBEr3ghNSeQGnOVgwZWlZIyasq60GbVcG14oyueT9HF-LcL_mOA2ItNqgRtKx34IQpWUZ5GKcgOnY2oCj7GAEZ0wW5k2ApKxG5qMU4t9lOnwOUYSL5Y-yG41OQ_-AuDS4RH</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Sahoo, Priyanka</creator><creator>Singhal, Richa</creator><creator>Sow, Pradeep Kumar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7802-8172</orcidid><orcidid>https://orcid.org/0000-0002-8842-5606</orcidid></search><sort><creationdate>20220921</creationdate><title>Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning</title><author>Sahoo, Priyanka ; Singhal, Richa ; Sow, Pradeep Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-4c56e02adc6909478e375f0db45ad40e7984c3ede276a121f685dfb94df49d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahoo, Priyanka</creatorcontrib><creatorcontrib>Singhal, Richa</creatorcontrib><creatorcontrib>Sow, Pradeep Kumar</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahoo, Priyanka</au><au>Singhal, Richa</au><au>Sow, Pradeep Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-09-21</date><risdate>2022</risdate><volume>14</volume><issue>37</issue><spage>42586</spage><epage>42601</epage><pages>42586-42601</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Meniscus-confined electrodeposition and electrodissolution are a facile maskless approach to generate controlled surface patterns and 3D microstructures. In these processes, the solid–liquid interfacial area confined by the meniscus dictates the zone on which the electrodeposition or the electrodissolution occurs. In this work, we show that the process of electrodeposition or electrodissolution in a meniscus-confined droplet system can lead to dynamic spreading of the meniscus, thereby changing the solid–liquid interfacial area confined by the meniscus. Our results show that the wetting dynamics depends on the applied voltage and the type of interface underneath the droplet, specifically a smooth surface with a homogeneous solid–liquid interface or a superhydrophobic surface with a heterogeneous solid–liquid and liquid–vapor interface. It is found that both electrodissolution and electrodeposition processes induced droplet spreading in the case of a smooth surface with a homogeneous interface. However, a superhydrophobic surface with a heterogeneous interface under the droplet produced nonlinear spreading during electrodissolution and spreading inhibition during electrodeposition. The underlying mechanisms resulting in the observed behavior have been explicated. The dynamic droplet spreading could modify the dimensions of the patterns formed and hence is of immense importance to the meniscus-confined electrochemical micromachining. The findings also provide fundamental insights into the spreading behavior and wetting transitions induced by electrochemical reactions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c04798</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7802-8172</orcidid><orcidid>https://orcid.org/0000-0002-8842-5606</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-09, Vol.14 (37), p.42586-42601
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2714063504
source American Chemical Society Journals
subjects Surfaces, Interfaces, and Applications
title Dynamic Electrolyte Spreading during Meniscus-Confined Electrodeposition and Electrodissolution of Copper for Surface Patterning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Electrolyte%20Spreading%20during%20Meniscus-Confined%20Electrodeposition%20and%20Electrodissolution%20of%20Copper%20for%20Surface%20Patterning&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sahoo,%20Priyanka&rft.date=2022-09-21&rft.volume=14&rft.issue=37&rft.spage=42586&rft.epage=42601&rft.pages=42586-42601&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04798&rft_dat=%3Cproquest_cross%3E2714063504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714063504&rft_id=info:pmid/&rfr_iscdi=true