Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries

Effect of fluoride additives was investigated in organic solvents containing LiCF 3SO 3 to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO 4 was also examined for comparison. Among examined LiBF 4, LiPF 6, LiAsF 6, LiSbF 6 and LiClO 4, LiBF 4 was the best additiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state sciences 2002-11, Vol.4 (11), p.1385-1394
Hauptverfasser: Nakajima, Tsuyoshi, Mori, Mitsuhiro, Gupta, Vinay, Ohzawa, Yoshimi, Iwata, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1394
container_issue 11
container_start_page 1385
container_title Solid state sciences
container_volume 4
creator Nakajima, Tsuyoshi
Mori, Mitsuhiro
Gupta, Vinay
Ohzawa, Yoshimi
Iwata, Hiroyuki
description Effect of fluoride additives was investigated in organic solvents containing LiCF 3SO 3 to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO 4 was also examined for comparison. Among examined LiBF 4, LiPF 6, LiAsF 6, LiSbF 6 and LiClO 4, LiBF 4 was the best additive to suppress the corrosion of aluminum because its oxidation potential is close to that of CF 3SO − 3 anion. Corrosion currents for aluminum in a complex fluoride- or LiClO 4-added solvents became smaller in the order, LiSbF 6>LiAsF 6>LiClO 4>LiPF 6>LiBF 4. Oxidation potential of ClO − 4 is nearly the same as that of CF 3SO − 3. However, the corrosion currents were similar to or slightly larger than those observed in LiPF 6-added solvents. SEM images of electrochemically oxidized aluminum samples indicated that the level of corrosion well coincided with the observed corrosion currents. The corrosion mechanism of aluminum was also proposed. Graphic
doi_str_mv 10.1016/S1293-2558(02)00026-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27133388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1293255802000262</els_id><sourcerecordid>27133388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-e548f67877806d1dd9aaa97babf512a4de118e5b96a9c4ef2d479df6548f45be3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFZ_grAXRQ-r-dps9iRS6gcUPFTPIZtMaGS7qcluwX9vtq149JQJ87wzzJNllxjdYYT5_RKTmhakLMUNIrcIIcILcpRNsKhoQZEoj1P9i5xmZzF-Jojzik2y5dxa0H3ubW7bwQdnIFfGuN5tIea-y_sV5NqH4KNLv4Spdli7bljn1oe8df3KpXrsNarvITiI59mJVW2Ei8M7zT6e5u-zl2Lx9vw6e1wUmlHWF1AyYXklqkogbrAxtVKqrhrV2BITxQxgLKBsaq5qzcASw6raWD7GWNkAnWbX-7mb4L8GiL1cu6ihbVUHfoiSVJhSKkQCyz2o0xkxgJWb4NYqfEuM5KhQ7hTK0Y9ERO4USpJyV4cFKmrV2qA67eJfmNFa1IQn7mHPQbp26yDIqB10GowLSa403v2z6QfuYoaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27133388</pqid></control><display><type>article</type><title>Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nakajima, Tsuyoshi ; Mori, Mitsuhiro ; Gupta, Vinay ; Ohzawa, Yoshimi ; Iwata, Hiroyuki</creator><creatorcontrib>Nakajima, Tsuyoshi ; Mori, Mitsuhiro ; Gupta, Vinay ; Ohzawa, Yoshimi ; Iwata, Hiroyuki</creatorcontrib><description>Effect of fluoride additives was investigated in organic solvents containing LiCF 3SO 3 to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO 4 was also examined for comparison. Among examined LiBF 4, LiPF 6, LiAsF 6, LiSbF 6 and LiClO 4, LiBF 4 was the best additive to suppress the corrosion of aluminum because its oxidation potential is close to that of CF 3SO − 3 anion. Corrosion currents for aluminum in a complex fluoride- or LiClO 4-added solvents became smaller in the order, LiSbF 6&gt;LiAsF 6&gt;LiClO 4&gt;LiPF 6&gt;LiBF 4. Oxidation potential of ClO − 4 is nearly the same as that of CF 3SO − 3. However, the corrosion currents were similar to or slightly larger than those observed in LiPF 6-added solvents. SEM images of electrochemically oxidized aluminum samples indicated that the level of corrosion well coincided with the observed corrosion currents. The corrosion mechanism of aluminum was also proposed. Graphic</description><identifier>ISSN: 1293-2558</identifier><identifier>EISSN: 1873-3085</identifier><identifier>DOI: 10.1016/S1293-2558(02)00026-2</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Applied sciences ; Corrosion of aluminum ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Fluoride additive ; Fluorination ; LiCF 3SO 3 ; Lithium ion battery</subject><ispartof>Solid state sciences, 2002-11, Vol.4 (11), p.1385-1394</ispartof><rights>2002 Éditions scientifiques et médicales Elsevier SAS</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-e548f67877806d1dd9aaa97babf512a4de118e5b96a9c4ef2d479df6548f45be3</citedby><cites>FETCH-LOGICAL-c434t-e548f67877806d1dd9aaa97babf512a4de118e5b96a9c4ef2d479df6548f45be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1293-2558(02)00026-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14398926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajima, Tsuyoshi</creatorcontrib><creatorcontrib>Mori, Mitsuhiro</creatorcontrib><creatorcontrib>Gupta, Vinay</creatorcontrib><creatorcontrib>Ohzawa, Yoshimi</creatorcontrib><creatorcontrib>Iwata, Hiroyuki</creatorcontrib><title>Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries</title><title>Solid state sciences</title><description>Effect of fluoride additives was investigated in organic solvents containing LiCF 3SO 3 to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO 4 was also examined for comparison. Among examined LiBF 4, LiPF 6, LiAsF 6, LiSbF 6 and LiClO 4, LiBF 4 was the best additive to suppress the corrosion of aluminum because its oxidation potential is close to that of CF 3SO − 3 anion. Corrosion currents for aluminum in a complex fluoride- or LiClO 4-added solvents became smaller in the order, LiSbF 6&gt;LiAsF 6&gt;LiClO 4&gt;LiPF 6&gt;LiBF 4. Oxidation potential of ClO − 4 is nearly the same as that of CF 3SO − 3. However, the corrosion currents were similar to or slightly larger than those observed in LiPF 6-added solvents. SEM images of electrochemically oxidized aluminum samples indicated that the level of corrosion well coincided with the observed corrosion currents. The corrosion mechanism of aluminum was also proposed. Graphic</description><subject>Applied sciences</subject><subject>Corrosion of aluminum</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Fluoride additive</subject><subject>Fluorination</subject><subject>LiCF 3SO 3</subject><subject>Lithium ion battery</subject><issn>1293-2558</issn><issn>1873-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFZ_grAXRQ-r-dps9iRS6gcUPFTPIZtMaGS7qcluwX9vtq149JQJ87wzzJNllxjdYYT5_RKTmhakLMUNIrcIIcILcpRNsKhoQZEoj1P9i5xmZzF-Jojzik2y5dxa0H3ubW7bwQdnIFfGuN5tIea-y_sV5NqH4KNLv4Spdli7bljn1oe8df3KpXrsNarvITiI59mJVW2Ei8M7zT6e5u-zl2Lx9vw6e1wUmlHWF1AyYXklqkogbrAxtVKqrhrV2BITxQxgLKBsaq5qzcASw6raWD7GWNkAnWbX-7mb4L8GiL1cu6ihbVUHfoiSVJhSKkQCyz2o0xkxgJWb4NYqfEuM5KhQ7hTK0Y9ERO4USpJyV4cFKmrV2qA67eJfmNFa1IQn7mHPQbp26yDIqB10GowLSa403v2z6QfuYoaA</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Nakajima, Tsuyoshi</creator><creator>Mori, Mitsuhiro</creator><creator>Gupta, Vinay</creator><creator>Ohzawa, Yoshimi</creator><creator>Iwata, Hiroyuki</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20021101</creationdate><title>Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries</title><author>Nakajima, Tsuyoshi ; Mori, Mitsuhiro ; Gupta, Vinay ; Ohzawa, Yoshimi ; Iwata, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-e548f67877806d1dd9aaa97babf512a4de118e5b96a9c4ef2d479df6548f45be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Corrosion of aluminum</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Fluoride additive</topic><topic>Fluorination</topic><topic>LiCF 3SO 3</topic><topic>Lithium ion battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Tsuyoshi</creatorcontrib><creatorcontrib>Mori, Mitsuhiro</creatorcontrib><creatorcontrib>Gupta, Vinay</creatorcontrib><creatorcontrib>Ohzawa, Yoshimi</creatorcontrib><creatorcontrib>Iwata, Hiroyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Solid state sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Tsuyoshi</au><au>Mori, Mitsuhiro</au><au>Gupta, Vinay</au><au>Ohzawa, Yoshimi</au><au>Iwata, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries</atitle><jtitle>Solid state sciences</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>4</volume><issue>11</issue><spage>1385</spage><epage>1394</epage><pages>1385-1394</pages><issn>1293-2558</issn><eissn>1873-3085</eissn><abstract>Effect of fluoride additives was investigated in organic solvents containing LiCF 3SO 3 to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO 4 was also examined for comparison. Among examined LiBF 4, LiPF 6, LiAsF 6, LiSbF 6 and LiClO 4, LiBF 4 was the best additive to suppress the corrosion of aluminum because its oxidation potential is close to that of CF 3SO − 3 anion. Corrosion currents for aluminum in a complex fluoride- or LiClO 4-added solvents became smaller in the order, LiSbF 6&gt;LiAsF 6&gt;LiClO 4&gt;LiPF 6&gt;LiBF 4. Oxidation potential of ClO − 4 is nearly the same as that of CF 3SO − 3. However, the corrosion currents were similar to or slightly larger than those observed in LiPF 6-added solvents. SEM images of electrochemically oxidized aluminum samples indicated that the level of corrosion well coincided with the observed corrosion currents. The corrosion mechanism of aluminum was also proposed. Graphic</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/S1293-2558(02)00026-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1293-2558
ispartof Solid state sciences, 2002-11, Vol.4 (11), p.1385-1394
issn 1293-2558
1873-3085
language eng
recordid cdi_proquest_miscellaneous_27133388
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Corrosion of aluminum
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Fluoride additive
Fluorination
LiCF 3SO 3
Lithium ion battery
title Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20fluoride%20additives%20on%20the%20corrosion%20of%20aluminum%20for%20lithium%20ion%20batteries&rft.jtitle=Solid%20state%20sciences&rft.au=Nakajima,%20Tsuyoshi&rft.date=2002-11-01&rft.volume=4&rft.issue=11&rft.spage=1385&rft.epage=1394&rft.pages=1385-1394&rft.issn=1293-2558&rft.eissn=1873-3085&rft_id=info:doi/10.1016/S1293-2558(02)00026-2&rft_dat=%3Cproquest_cross%3E27133388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27133388&rft_id=info:pmid/&rft_els_id=S1293255802000262&rfr_iscdi=true