Health insurance system and resilience to epidemics

We theoretically analyze the resilience (efficiency) of health insurance systems and diverse factors including trace and test technology, infection and contagion rates, and social distancing/lockdown policy, in coping with contagious diseases like COVID‐19. Our findings can be summarized as follows....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2023-01, Vol.43 (1), p.97-114
Hauptverfasser: Hong, Jimin, Seog, Sung Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 1
container_start_page 97
container_title Risk analysis
container_volume 43
creator Hong, Jimin
Seog, Sung Hun
description We theoretically analyze the resilience (efficiency) of health insurance systems and diverse factors including trace and test technology, infection and contagion rates, and social distancing/lockdown policy, in coping with contagious diseases like COVID‐19. Our findings can be summarized as follows. First, public insurance is more resilient than market insurance, as the former's investment in test technology is made at the social optimum, whereas the latter's investment is less. The decentralized behavior of competing insurers leads to a less resilient outcome. Second, resilience decreases as the market becomes more competitive because the externality effect becomes more severe. Third, a higher contagion rate, a more cost‐efficient test technology or a higher initial infection rate unless it is not too high, leads to a higher test accuracy level. Fourth, the socially optimal social distancing/lockdown policy is determined by comparison between its relative costs and the benefit from contagion reduction.
doi_str_mv 10.1111/risa.14005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2713308392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713308392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2875-a93794a0d01d04097e37348fabfc3856b89e143f56622d2e0b88ec3094b552d13</originalsourceid><addsrcrecordid>eNp90M1LwzAYx_EgipvTi3-AFLyI0JnkSdrkOIa6wUDw5RzS9ilm9GUmLbL_3s5NDx7MJRA-_AhfQi4ZnbLh3HkX7JQJSuURGTMJOk40F8dkTHnKYwHAR-QshDWlbDDpKRlBQpUGYGMCC7RV9x65JvTeNjlGYRs6rCPbFJHH4CqHu9eujXDjCqxdHs7JSWmrgBeHe0LeHu5f54t49fS4nM9Wcc5VKmOrIdXC0oKyggqqU4QUhCptVuagZJIpjUxAKZOE84IjzZTCHKgWmZS8YDAhN_vdjW8_egydqV3Isapsg20fDE8ZAFWg-UCv_9B12_tm-N2g0kRBIocwE3K7V7lvQ_BYmo13tfVbw6jZpTS7lOY75YCvDpN9VmPxS3_aDYDtwaercPvPlHlevsz2o1_ApHur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776836515</pqid></control><display><type>article</type><title>Health insurance system and resilience to epidemics</title><source>MEDLINE</source><source>Wiley Journals</source><source>Business Source Complete</source><creator>Hong, Jimin ; Seog, Sung Hun</creator><creatorcontrib>Hong, Jimin ; Seog, Sung Hun</creatorcontrib><description>We theoretically analyze the resilience (efficiency) of health insurance systems and diverse factors including trace and test technology, infection and contagion rates, and social distancing/lockdown policy, in coping with contagious diseases like COVID‐19. Our findings can be summarized as follows. First, public insurance is more resilient than market insurance, as the former's investment in test technology is made at the social optimum, whereas the latter's investment is less. The decentralized behavior of competing insurers leads to a less resilient outcome. Second, resilience decreases as the market becomes more competitive because the externality effect becomes more severe. Third, a higher contagion rate, a more cost‐efficient test technology or a higher initial infection rate unless it is not too high, leads to a higher test accuracy level. Fourth, the socially optimal social distancing/lockdown policy is determined by comparison between its relative costs and the benefit from contagion reduction.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.14005</identifier><identifier>PMID: 36089331</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adaptation, Psychological ; Communicable Disease Control ; Contagion ; Coping ; COVID-19 ; COVID-19 - epidemiology ; Decentralization ; Disease control ; epidemic ; Epidemics ; Health insurance ; Humans ; Infections ; Infectious diseases ; Insurance ; Insurance, Health ; market insurance ; Markets ; Optimization ; public insurance ; Resilience ; Risk assessment ; social distancing/lockdown ; Technology ; Tests ; trace and test</subject><ispartof>Risk analysis, 2023-01, Vol.43 (1), p.97-114</ispartof><rights>2022 Society for Risk Analysis.</rights><rights>2023 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2875-a93794a0d01d04097e37348fabfc3856b89e143f56622d2e0b88ec3094b552d13</citedby><cites>FETCH-LOGICAL-c2875-a93794a0d01d04097e37348fabfc3856b89e143f56622d2e0b88ec3094b552d13</cites><orcidid>0000-0003-1470-0115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.14005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.14005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36089331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Jimin</creatorcontrib><creatorcontrib>Seog, Sung Hun</creatorcontrib><title>Health insurance system and resilience to epidemics</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>We theoretically analyze the resilience (efficiency) of health insurance systems and diverse factors including trace and test technology, infection and contagion rates, and social distancing/lockdown policy, in coping with contagious diseases like COVID‐19. Our findings can be summarized as follows. First, public insurance is more resilient than market insurance, as the former's investment in test technology is made at the social optimum, whereas the latter's investment is less. The decentralized behavior of competing insurers leads to a less resilient outcome. Second, resilience decreases as the market becomes more competitive because the externality effect becomes more severe. Third, a higher contagion rate, a more cost‐efficient test technology or a higher initial infection rate unless it is not too high, leads to a higher test accuracy level. Fourth, the socially optimal social distancing/lockdown policy is determined by comparison between its relative costs and the benefit from contagion reduction.</description><subject>Adaptation, Psychological</subject><subject>Communicable Disease Control</subject><subject>Contagion</subject><subject>Coping</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Decentralization</subject><subject>Disease control</subject><subject>epidemic</subject><subject>Epidemics</subject><subject>Health insurance</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Insurance</subject><subject>Insurance, Health</subject><subject>market insurance</subject><subject>Markets</subject><subject>Optimization</subject><subject>public insurance</subject><subject>Resilience</subject><subject>Risk assessment</subject><subject>social distancing/lockdown</subject><subject>Technology</subject><subject>Tests</subject><subject>trace and test</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M1LwzAYx_EgipvTi3-AFLyI0JnkSdrkOIa6wUDw5RzS9ilm9GUmLbL_3s5NDx7MJRA-_AhfQi4ZnbLh3HkX7JQJSuURGTMJOk40F8dkTHnKYwHAR-QshDWlbDDpKRlBQpUGYGMCC7RV9x65JvTeNjlGYRs6rCPbFJHH4CqHu9eujXDjCqxdHs7JSWmrgBeHe0LeHu5f54t49fS4nM9Wcc5VKmOrIdXC0oKyggqqU4QUhCptVuagZJIpjUxAKZOE84IjzZTCHKgWmZS8YDAhN_vdjW8_egydqV3Isapsg20fDE8ZAFWg-UCv_9B12_tm-N2g0kRBIocwE3K7V7lvQ_BYmo13tfVbw6jZpTS7lOY75YCvDpN9VmPxS3_aDYDtwaercPvPlHlevsz2o1_ApHur</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Hong, Jimin</creator><creator>Seog, Sung Hun</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1470-0115</orcidid></search><sort><creationdate>202301</creationdate><title>Health insurance system and resilience to epidemics</title><author>Hong, Jimin ; Seog, Sung Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2875-a93794a0d01d04097e37348fabfc3856b89e143f56622d2e0b88ec3094b552d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation, Psychological</topic><topic>Communicable Disease Control</topic><topic>Contagion</topic><topic>Coping</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Decentralization</topic><topic>Disease control</topic><topic>epidemic</topic><topic>Epidemics</topic><topic>Health insurance</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Insurance</topic><topic>Insurance, Health</topic><topic>market insurance</topic><topic>Markets</topic><topic>Optimization</topic><topic>public insurance</topic><topic>Resilience</topic><topic>Risk assessment</topic><topic>social distancing/lockdown</topic><topic>Technology</topic><topic>Tests</topic><topic>trace and test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jimin</creatorcontrib><creatorcontrib>Seog, Sung Hun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jimin</au><au>Seog, Sung Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health insurance system and resilience to epidemics</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2023-01</date><risdate>2023</risdate><volume>43</volume><issue>1</issue><spage>97</spage><epage>114</epage><pages>97-114</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>We theoretically analyze the resilience (efficiency) of health insurance systems and diverse factors including trace and test technology, infection and contagion rates, and social distancing/lockdown policy, in coping with contagious diseases like COVID‐19. Our findings can be summarized as follows. First, public insurance is more resilient than market insurance, as the former's investment in test technology is made at the social optimum, whereas the latter's investment is less. The decentralized behavior of competing insurers leads to a less resilient outcome. Second, resilience decreases as the market becomes more competitive because the externality effect becomes more severe. Third, a higher contagion rate, a more cost‐efficient test technology or a higher initial infection rate unless it is not too high, leads to a higher test accuracy level. Fourth, the socially optimal social distancing/lockdown policy is determined by comparison between its relative costs and the benefit from contagion reduction.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>36089331</pmid><doi>10.1111/risa.14005</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1470-0115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2023-01, Vol.43 (1), p.97-114
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_2713308392
source MEDLINE; Wiley Journals; Business Source Complete
subjects Adaptation, Psychological
Communicable Disease Control
Contagion
Coping
COVID-19
COVID-19 - epidemiology
Decentralization
Disease control
epidemic
Epidemics
Health insurance
Humans
Infections
Infectious diseases
Insurance
Insurance, Health
market insurance
Markets
Optimization
public insurance
Resilience
Risk assessment
social distancing/lockdown
Technology
Tests
trace and test
title Health insurance system and resilience to epidemics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20insurance%20system%20and%20resilience%20to%20epidemics&rft.jtitle=Risk%20analysis&rft.au=Hong,%20Jimin&rft.date=2023-01&rft.volume=43&rft.issue=1&rft.spage=97&rft.epage=114&rft.pages=97-114&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.14005&rft_dat=%3Cproquest_cross%3E2713308392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776836515&rft_id=info:pmid/36089331&rfr_iscdi=true