Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics

Highly porous cellular silicon carbide was prepared from native pine wood tissue by vapor infiltration of Si, SiO, and CH 3SiCl 3 into the carbonized template. β-SiC at the biocarbon surface finally resulted in a complete conversion of the template into a cellular silicon carbide material. Due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2002, Vol.22 (14), p.2697-2707
Hauptverfasser: Greil, Peter, Vogli, Evelina, Fey, Tobias, Bezold, Alexander, Popovska, Nadja, Gerhard, Helmut, Sieber, Heino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2707
container_issue 14
container_start_page 2697
container_title Journal of the European Ceramic Society
container_volume 22
creator Greil, Peter
Vogli, Evelina
Fey, Tobias
Bezold, Alexander
Popovska, Nadja
Gerhard, Helmut
Sieber, Heino
description Highly porous cellular silicon carbide was prepared from native pine wood tissue by vapor infiltration of Si, SiO, and CH 3SiCl 3 into the carbonized template. β-SiC at the biocarbon surface finally resulted in a complete conversion of the template into a cellular silicon carbide material. Due to the different reaction mechanisms, different strut microstructures were obtained. The strength of the biomorphous SiC was measured under biaxial tensile loading conditions perpendicular to the cell elongation (in-plane loading). A non-catastrophic stress-strain behavior was observed in the Si and CH 3SiCl 3 derived materials which showed a high skeleton density of ⩾3 g/cm 3. Extendend cell wall fracture (peeling) was observed in the Si derived material where the original intercellular lamella was retained in the ceramic material. FE calculations of the stress distribution in a representative structure model showed significantly lower levels of tensile stress in rectangular pore arrays (early wood tissue) compared to ellipsoidal pores (late wood tissue).
doi_str_mv 10.1016/S0955-2219(02)00135-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27132513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221902001358</els_id><sourcerecordid>27132513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-7ee973c33217d2274ec9340d26236520321faa1dee6e67db0c80eae88aa989423</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouK7-BKEXRQ_VPNqmOYks6wMWPKigp5AmUzbSNmvSLvjvTbeiR0_DDN-8PoROCb4imBTXz1jkeUopEReYXmJMWJ6We2hGSs7Sgoi3fTT7RQ7RUQgfEeJYiBl6X9Y16D5xddJa7V3o_aD7wUPiuqRfQ1J7NeUVrNXWOj-ilXWt85u1G0ISbGN1hLXylTWQaPAqjgrH6KBWTYCTnzhHr3fLl8VDunq6f1zcrlKdsaxPOYDgTDNGCTeU8gy0YBk2tKCsyCmO9VopYgAKKLipsC4xKChLpUQpMsrm6Hyau_Huc4DQy9YGDU2jOoj3ScoJozlhEcwncHwzeKjlxttW-S9JsBxFyp1IOVqSmMqdSFnGvrOfBSpo1UQhnbbhr5kJmnFWRO5m4iB-u7XgZdAWOg3G-qhYGmf_2fQNjYWIPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27132513</pqid></control><display><type>article</type><title>Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics</title><source>Elsevier ScienceDirect Journals</source><creator>Greil, Peter ; Vogli, Evelina ; Fey, Tobias ; Bezold, Alexander ; Popovska, Nadja ; Gerhard, Helmut ; Sieber, Heino</creator><contributor>WCA</contributor><creatorcontrib>Greil, Peter ; Vogli, Evelina ; Fey, Tobias ; Bezold, Alexander ; Popovska, Nadja ; Gerhard, Helmut ; Sieber, Heino ; WCA</creatorcontrib><description>Highly porous cellular silicon carbide was prepared from native pine wood tissue by vapor infiltration of Si, SiO, and CH 3SiCl 3 into the carbonized template. β-SiC at the biocarbon surface finally resulted in a complete conversion of the template into a cellular silicon carbide material. Due to the different reaction mechanisms, different strut microstructures were obtained. The strength of the biomorphous SiC was measured under biaxial tensile loading conditions perpendicular to the cell elongation (in-plane loading). A non-catastrophic stress-strain behavior was observed in the Si and CH 3SiCl 3 derived materials which showed a high skeleton density of ⩾3 g/cm 3. Extendend cell wall fracture (peeling) was observed in the Si derived material where the original intercellular lamella was retained in the ceramic material. FE calculations of the stress distribution in a representative structure model showed significantly lower levels of tensile stress in rectangular pore arrays (early wood tissue) compared to ellipsoidal pores (late wood tissue).</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/S0955-2219(02)00135-8</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Biomorphous SiC ceramics ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; Exact sciences and technology ; Microstructure and strength ; Structural ceramics ; Technical ceramics</subject><ispartof>Journal of the European Ceramic Society, 2002, Vol.22 (14), p.2697-2707</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-7ee973c33217d2274ec9340d26236520321faa1dee6e67db0c80eae88aa989423</citedby><cites>FETCH-LOGICAL-c434t-7ee973c33217d2274ec9340d26236520321faa1dee6e67db0c80eae88aa989423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955221902001358$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13924736$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>Greil, Peter</creatorcontrib><creatorcontrib>Vogli, Evelina</creatorcontrib><creatorcontrib>Fey, Tobias</creatorcontrib><creatorcontrib>Bezold, Alexander</creatorcontrib><creatorcontrib>Popovska, Nadja</creatorcontrib><creatorcontrib>Gerhard, Helmut</creatorcontrib><creatorcontrib>Sieber, Heino</creatorcontrib><title>Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics</title><title>Journal of the European Ceramic Society</title><description>Highly porous cellular silicon carbide was prepared from native pine wood tissue by vapor infiltration of Si, SiO, and CH 3SiCl 3 into the carbonized template. β-SiC at the biocarbon surface finally resulted in a complete conversion of the template into a cellular silicon carbide material. Due to the different reaction mechanisms, different strut microstructures were obtained. The strength of the biomorphous SiC was measured under biaxial tensile loading conditions perpendicular to the cell elongation (in-plane loading). A non-catastrophic stress-strain behavior was observed in the Si and CH 3SiCl 3 derived materials which showed a high skeleton density of ⩾3 g/cm 3. Extendend cell wall fracture (peeling) was observed in the Si derived material where the original intercellular lamella was retained in the ceramic material. FE calculations of the stress distribution in a representative structure model showed significantly lower levels of tensile stress in rectangular pore arrays (early wood tissue) compared to ellipsoidal pores (late wood tissue).</description><subject>Applied sciences</subject><subject>Biomorphous SiC ceramics</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Microstructure and strength</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouK7-BKEXRQ_VPNqmOYks6wMWPKigp5AmUzbSNmvSLvjvTbeiR0_DDN-8PoROCb4imBTXz1jkeUopEReYXmJMWJ6We2hGSs7Sgoi3fTT7RQ7RUQgfEeJYiBl6X9Y16D5xddJa7V3o_aD7wUPiuqRfQ1J7NeUVrNXWOj-ilXWt85u1G0ISbGN1hLXylTWQaPAqjgrH6KBWTYCTnzhHr3fLl8VDunq6f1zcrlKdsaxPOYDgTDNGCTeU8gy0YBk2tKCsyCmO9VopYgAKKLipsC4xKChLpUQpMsrm6Hyau_Huc4DQy9YGDU2jOoj3ScoJozlhEcwncHwzeKjlxttW-S9JsBxFyp1IOVqSmMqdSFnGvrOfBSpo1UQhnbbhr5kJmnFWRO5m4iB-u7XgZdAWOg3G-qhYGmf_2fQNjYWIPQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Greil, Peter</creator><creator>Vogli, Evelina</creator><creator>Fey, Tobias</creator><creator>Bezold, Alexander</creator><creator>Popovska, Nadja</creator><creator>Gerhard, Helmut</creator><creator>Sieber, Heino</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2002</creationdate><title>Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics</title><author>Greil, Peter ; Vogli, Evelina ; Fey, Tobias ; Bezold, Alexander ; Popovska, Nadja ; Gerhard, Helmut ; Sieber, Heino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-7ee973c33217d2274ec9340d26236520321faa1dee6e67db0c80eae88aa989423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Biomorphous SiC ceramics</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Microstructure and strength</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greil, Peter</creatorcontrib><creatorcontrib>Vogli, Evelina</creatorcontrib><creatorcontrib>Fey, Tobias</creatorcontrib><creatorcontrib>Bezold, Alexander</creatorcontrib><creatorcontrib>Popovska, Nadja</creatorcontrib><creatorcontrib>Gerhard, Helmut</creatorcontrib><creatorcontrib>Sieber, Heino</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greil, Peter</au><au>Vogli, Evelina</au><au>Fey, Tobias</au><au>Bezold, Alexander</au><au>Popovska, Nadja</au><au>Gerhard, Helmut</au><au>Sieber, Heino</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2002</date><risdate>2002</risdate><volume>22</volume><issue>14</issue><spage>2697</spage><epage>2707</epage><pages>2697-2707</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>Highly porous cellular silicon carbide was prepared from native pine wood tissue by vapor infiltration of Si, SiO, and CH 3SiCl 3 into the carbonized template. β-SiC at the biocarbon surface finally resulted in a complete conversion of the template into a cellular silicon carbide material. Due to the different reaction mechanisms, different strut microstructures were obtained. The strength of the biomorphous SiC was measured under biaxial tensile loading conditions perpendicular to the cell elongation (in-plane loading). A non-catastrophic stress-strain behavior was observed in the Si and CH 3SiCl 3 derived materials which showed a high skeleton density of ⩾3 g/cm 3. Extendend cell wall fracture (peeling) was observed in the Si derived material where the original intercellular lamella was retained in the ceramic material. FE calculations of the stress distribution in a representative structure model showed significantly lower levels of tensile stress in rectangular pore arrays (early wood tissue) compared to ellipsoidal pores (late wood tissue).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0955-2219(02)00135-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2002, Vol.22 (14), p.2697-2707
issn 0955-2219
1873-619X
language eng
recordid cdi_proquest_miscellaneous_27132513
source Elsevier ScienceDirect Journals
subjects Applied sciences
Biomorphous SiC ceramics
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
Exact sciences and technology
Microstructure and strength
Structural ceramics
Technical ceramics
title Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microstructure%20on%20the%20fracture%20behavior%20of%20biomorphous%20silicon%20carbide%20ceramics&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Greil,%20Peter&rft.date=2002&rft.volume=22&rft.issue=14&rft.spage=2697&rft.epage=2707&rft.pages=2697-2707&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/S0955-2219(02)00135-8&rft_dat=%3Cproquest_cross%3E27132513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27132513&rft_id=info:pmid/&rft_els_id=S0955221902001358&rfr_iscdi=true