Direct and indirect algorithms for on-line learning of disjunctions

It is easy to design on-line learning algorithms for learning k out of n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly O( n k ) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only n weights (one pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2002-07, Vol.284 (1), p.109-142
Hauptverfasser: Helmbold, D.P, Panizza, S, Warmuth, M.K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1
container_start_page 109
container_title Theoretical computer science
container_volume 284
creator Helmbold, D.P
Panizza, S
Warmuth, M.K
description It is easy to design on-line learning algorithms for learning k out of n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly O( n k ) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only O( n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only O( n) weights. This results in a new O( n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.
doi_str_mv 10.1016/S0304-3975(01)00081-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27130631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397501000810</els_id><sourcerecordid>27130631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchF0cPqZLP52JNI_YSCB3sPaTapKdukJlvBf--2W_ToaRh43nmZB6FzAjcECL99BwpVQWvBroBcA4AkBRygEZGiLsqyrg7R6Bc5Ric5L3sImOAjNHnwyZoO69BgH5r90i5i8t3HKmMXE46haH2wuLU6BR8WODrc-LzcBNP5GPIpOnK6zfZsP8do9vQ4m7wU07fn18n9tDCUy66QXFfGMjEnVIJmrCYaGMy5I5WlnEsBQFlDoZQNMbWRjDBeUucEt7Uu53SMLoez6xQ_NzZ3auWzsW2rg42brEpBKHBKepANoEkx52SdWie_0ulbEVBbY2pnTG11KCBqZ0xBn7vYF-hsdOuSDsbnvzAVVS0E77m7gbP9s1_eJpWNt8HYQZ9qov-n6QcI_35i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27130631</pqid></control><display><type>article</type><title>Direct and indirect algorithms for on-line learning of disjunctions</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Helmbold, D.P ; Panizza, S ; Warmuth, M.K</creator><creatorcontrib>Helmbold, D.P ; Panizza, S ; Warmuth, M.K</creatorcontrib><description>It is easy to design on-line learning algorithms for learning k out of n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly O( n k ) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only O( n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only O( n) weights. This results in a new O( n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(01)00081-0</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Bayes algorithm ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mistake bounds ; Multiplicative updates ; On-line learning</subject><ispartof>Theoretical computer science, 2002-07, Vol.284 (1), p.109-142</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</citedby><cites>FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(01)00081-0$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3549,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13749776$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmbold, D.P</creatorcontrib><creatorcontrib>Panizza, S</creatorcontrib><creatorcontrib>Warmuth, M.K</creatorcontrib><title>Direct and indirect algorithms for on-line learning of disjunctions</title><title>Theoretical computer science</title><description>It is easy to design on-line learning algorithms for learning k out of n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly O( n k ) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only O( n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only O( n) weights. This results in a new O( n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayes algorithm</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mistake bounds</subject><subject>Multiplicative updates</subject><subject>On-line learning</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchF0cPqZLP52JNI_YSCB3sPaTapKdukJlvBf--2W_ToaRh43nmZB6FzAjcECL99BwpVQWvBroBcA4AkBRygEZGiLsqyrg7R6Bc5Ric5L3sImOAjNHnwyZoO69BgH5r90i5i8t3HKmMXE46haH2wuLU6BR8WODrc-LzcBNP5GPIpOnK6zfZsP8do9vQ4m7wU07fn18n9tDCUy66QXFfGMjEnVIJmrCYaGMy5I5WlnEsBQFlDoZQNMbWRjDBeUucEt7Uu53SMLoez6xQ_NzZ3auWzsW2rg42brEpBKHBKepANoEkx52SdWie_0ulbEVBbY2pnTG11KCBqZ0xBn7vYF-hsdOuSDsbnvzAVVS0E77m7gbP9s1_eJpWNt8HYQZ9qov-n6QcI_35i</recordid><startdate>20020706</startdate><enddate>20020706</enddate><creator>Helmbold, D.P</creator><creator>Panizza, S</creator><creator>Warmuth, M.K</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020706</creationdate><title>Direct and indirect algorithms for on-line learning of disjunctions</title><author>Helmbold, D.P ; Panizza, S ; Warmuth, M.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayes algorithm</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mistake bounds</topic><topic>Multiplicative updates</topic><topic>On-line learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmbold, D.P</creatorcontrib><creatorcontrib>Panizza, S</creatorcontrib><creatorcontrib>Warmuth, M.K</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmbold, D.P</au><au>Panizza, S</au><au>Warmuth, M.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct and indirect algorithms for on-line learning of disjunctions</atitle><jtitle>Theoretical computer science</jtitle><date>2002-07-06</date><risdate>2002</risdate><volume>284</volume><issue>1</issue><spage>109</spage><epage>142</epage><pages>109-142</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>It is easy to design on-line learning algorithms for learning k out of n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly O( n k ) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only O( n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only O( n) weights. This results in a new O( n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(01)00081-0</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2002-07, Vol.284 (1), p.109-142
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_27130631
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Artificial intelligence
Bayes algorithm
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Mistake bounds
Multiplicative updates
On-line learning
title Direct and indirect algorithms for on-line learning of disjunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20and%20indirect%20algorithms%20for%20on-line%20learning%20of%20disjunctions&rft.jtitle=Theoretical%20computer%20science&rft.au=Helmbold,%20D.P&rft.date=2002-07-06&rft.volume=284&rft.issue=1&rft.spage=109&rft.epage=142&rft.pages=109-142&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(01)00081-0&rft_dat=%3Cproquest_cross%3E27130631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27130631&rft_id=info:pmid/&rft_els_id=S0304397501000810&rfr_iscdi=true