Direct and indirect algorithms for on-line learning of disjunctions
It is easy to design on-line learning algorithms for learning k out of n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly O( n k ) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only n weights (one pe...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2002-07, Vol.284 (1), p.109-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Theoretical computer science |
container_volume | 284 |
creator | Helmbold, D.P Panizza, S Warmuth, M.K |
description | It is easy to design on-line learning algorithms for learning
k out of
n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly
O(
n
k
) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only
n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only
O(
n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only
O(
n) weights. This results in a new
O(
n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow. |
doi_str_mv | 10.1016/S0304-3975(01)00081-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27130631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397501000810</els_id><sourcerecordid>27130631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchF0cPqZLP52JNI_YSCB3sPaTapKdukJlvBf--2W_ToaRh43nmZB6FzAjcECL99BwpVQWvBroBcA4AkBRygEZGiLsqyrg7R6Bc5Ric5L3sImOAjNHnwyZoO69BgH5r90i5i8t3HKmMXE46haH2wuLU6BR8WODrc-LzcBNP5GPIpOnK6zfZsP8do9vQ4m7wU07fn18n9tDCUy66QXFfGMjEnVIJmrCYaGMy5I5WlnEsBQFlDoZQNMbWRjDBeUucEt7Uu53SMLoez6xQ_NzZ3auWzsW2rg42brEpBKHBKepANoEkx52SdWie_0ulbEVBbY2pnTG11KCBqZ0xBn7vYF-hsdOuSDsbnvzAVVS0E77m7gbP9s1_eJpWNt8HYQZ9qov-n6QcI_35i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27130631</pqid></control><display><type>article</type><title>Direct and indirect algorithms for on-line learning of disjunctions</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Helmbold, D.P ; Panizza, S ; Warmuth, M.K</creator><creatorcontrib>Helmbold, D.P ; Panizza, S ; Warmuth, M.K</creatorcontrib><description>It is easy to design on-line learning algorithms for learning
k out of
n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly
O(
n
k
) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only
n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only
O(
n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only
O(
n) weights. This results in a new
O(
n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(01)00081-0</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Bayes algorithm ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mistake bounds ; Multiplicative updates ; On-line learning</subject><ispartof>Theoretical computer science, 2002-07, Vol.284 (1), p.109-142</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</citedby><cites>FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(01)00081-0$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3549,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13749776$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmbold, D.P</creatorcontrib><creatorcontrib>Panizza, S</creatorcontrib><creatorcontrib>Warmuth, M.K</creatorcontrib><title>Direct and indirect algorithms for on-line learning of disjunctions</title><title>Theoretical computer science</title><description>It is easy to design on-line learning algorithms for learning
k out of
n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly
O(
n
k
) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only
n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only
O(
n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only
O(
n) weights. This results in a new
O(
n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayes algorithm</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mistake bounds</subject><subject>Multiplicative updates</subject><subject>On-line learning</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchF0cPqZLP52JNI_YSCB3sPaTapKdukJlvBf--2W_ToaRh43nmZB6FzAjcECL99BwpVQWvBroBcA4AkBRygEZGiLsqyrg7R6Bc5Ric5L3sImOAjNHnwyZoO69BgH5r90i5i8t3HKmMXE46haH2wuLU6BR8WODrc-LzcBNP5GPIpOnK6zfZsP8do9vQ4m7wU07fn18n9tDCUy66QXFfGMjEnVIJmrCYaGMy5I5WlnEsBQFlDoZQNMbWRjDBeUucEt7Uu53SMLoez6xQ_NzZ3auWzsW2rg42brEpBKHBKepANoEkx52SdWie_0ulbEVBbY2pnTG11KCBqZ0xBn7vYF-hsdOuSDsbnvzAVVS0E77m7gbP9s1_eJpWNt8HYQZ9qov-n6QcI_35i</recordid><startdate>20020706</startdate><enddate>20020706</enddate><creator>Helmbold, D.P</creator><creator>Panizza, S</creator><creator>Warmuth, M.K</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020706</creationdate><title>Direct and indirect algorithms for on-line learning of disjunctions</title><author>Helmbold, D.P ; Panizza, S ; Warmuth, M.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-86a4ce57b1380a5591a050b6f14e366870035d3028d1c9c8515623ff76e9a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayes algorithm</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mistake bounds</topic><topic>Multiplicative updates</topic><topic>On-line learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmbold, D.P</creatorcontrib><creatorcontrib>Panizza, S</creatorcontrib><creatorcontrib>Warmuth, M.K</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmbold, D.P</au><au>Panizza, S</au><au>Warmuth, M.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct and indirect algorithms for on-line learning of disjunctions</atitle><jtitle>Theoretical computer science</jtitle><date>2002-07-06</date><risdate>2002</risdate><volume>284</volume><issue>1</issue><spage>109</spage><epage>142</epage><pages>109-142</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>It is easy to design on-line learning algorithms for learning
k out of
n variable monotone disjunctions by simply keeping one weight per disjunction. Such algorithms use roughly
O(
n
k
) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only
n weights (one per variable or attribute) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this paper is to investigate how exponentially many weights can be collapsed into only
O(
n) weights. In particular, we consider probabilistic assumptions that enable the Bayes optimal algorithm's posterior over the disjunctions to be encoded with only
O(
n) weights. This results in a new
O(
n) algorithm for learning disjunctions which is related to the Bylander's BEG algorithm originally introduced for linear regression. Besides providing a Bayesian interpretation for this new algorithm, we are also able to obtain mistake bounds for the noise free case resembling those that have been derived for the Winnow algorithm. The same techniques used to derive this new algorithm also provide a Bayesian interpretation for a normalized version of Winnow.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(01)00081-0</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2002-07, Vol.284 (1), p.109-142 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_27130631 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Applied sciences Artificial intelligence Bayes algorithm Computer science control theory systems Exact sciences and technology Learning and adaptive systems Mistake bounds Multiplicative updates On-line learning |
title | Direct and indirect algorithms for on-line learning of disjunctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20and%20indirect%20algorithms%20for%20on-line%20learning%20of%20disjunctions&rft.jtitle=Theoretical%20computer%20science&rft.au=Helmbold,%20D.P&rft.date=2002-07-06&rft.volume=284&rft.issue=1&rft.spage=109&rft.epage=142&rft.pages=109-142&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(01)00081-0&rft_dat=%3Cproquest_cross%3E27130631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27130631&rft_id=info:pmid/&rft_els_id=S0304397501000810&rfr_iscdi=true |