Systematic Assessment of MODTRAN Emulators for Atmospheric Correction

Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022-01, Vol.60, p.1-17
Hauptverfasser: Vicent Servera, Jorge, Rivera-Caicedo, Juan Pablo, Verrelst, Jochem, Munoz-Mari, Jordi, Sabater, Neus, Berthelot, Beatrice, Camps-Valls, Gustau, Moreno, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Vicent Servera, Jorge
Rivera-Caicedo, Juan Pablo
Verrelst, Jochem
Munoz-Mari, Jordi
Sabater, Neus
Berthelot, Beatrice
Camps-Valls, Gustau
Moreno, Jose
description Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number of RTM runs. However, a concern is whether the emulator reaches sufficient accuracy for atmospheric correction. Therefore, we have performed a systematic assessment of key aspects that impact the precision of emulating MODTRAN: 1) regression algorithm; 2) training database size; 3) dimensionality reduction (DR) method and a number of components; and 4) spectral resolution. The Gaussian processes regression (GPR) was found the most accurate emulator. The principal component analysis remains a robust DR method and nearly 20 components reach sufficient precision. Based on a database of 1000 samples covering a broad range of atmospheric conditions, GPR emulators can reconstruct the simulated spectral data with relative errors below 1% for the 95th percentile. These emulators reduce the processing time from days to minutes, preserving sufficient accuracy for atmospheric correction and providing model uncertainties and derivatives. We provide a set of guidelines and tools to design and generate accurate emulators for satellite data processing applications.
doi_str_mv 10.1109/TGRS.2021.3071376
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2712844397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9409528</ieee_id><sourcerecordid>2612466620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-e73c48c29dc74e0a21aefe4e233aceb684992702177f7965c63151d5f1810823</originalsourceid><addsrcrecordid>eNpdkV9LIzEUxcPislZ3P4AIMuCLL1Nzk0wyeRFKt_4BV0H7HmJ6R0dmJjWZEfrtN6W1qE_34f7O4RwOIUdAxwBUn8-vHh7HjDIYc6qAK_mDjKAoypxKIfbIiIKWOSs12ycHMb5SCqIA9Yvsc0lLBrwYkdnjKvbY2r522SRGjLHFrs98lf27_zt_mNxls3ZobO9DzCofsknf-rh8wZD4qQ8BXV_77jf5Wdkm4p_tPSTzy9l8ep3f3l_dTCe3uRNC9Tkq7kTpmF44JZBaBhYrFMg4tw6fZCm0Zir1UapSWhZOcihgUVRQQgrMD8nFxnY5PLW4cClpsI1Zhrq1YWW8rc3XT1e_mGf_bpQEzhVNBmdbg-DfBoy9aevosGlsh36IhilgpRBcq4SefkNf_RC61M4wCUxIKdnaEDaUCz7GgNUuDFCz3sisNzLrjcx2o6Q5-dxip_gYJQHHG6BGxN1bC6oLVvL_nz2U5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612466620</pqid></control><display><type>article</type><title>Systematic Assessment of MODTRAN Emulators for Atmospheric Correction</title><source>IEEE Electronic Library (IEL)</source><creator>Vicent Servera, Jorge ; Rivera-Caicedo, Juan Pablo ; Verrelst, Jochem ; Munoz-Mari, Jordi ; Sabater, Neus ; Berthelot, Beatrice ; Camps-Valls, Gustau ; Moreno, Jose</creator><creatorcontrib>Vicent Servera, Jorge ; Rivera-Caicedo, Juan Pablo ; Verrelst, Jochem ; Munoz-Mari, Jordi ; Sabater, Neus ; Berthelot, Beatrice ; Camps-Valls, Gustau ; Moreno, Jose</creatorcontrib><description>Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number of RTM runs. However, a concern is whether the emulator reaches sufficient accuracy for atmospheric correction. Therefore, we have performed a systematic assessment of key aspects that impact the precision of emulating MODTRAN: 1) regression algorithm; 2) training database size; 3) dimensionality reduction (DR) method and a number of components; and 4) spectral resolution. The Gaussian processes regression (GPR) was found the most accurate emulator. The principal component analysis remains a robust DR method and nearly 20 components reach sufficient precision. Based on a database of 1000 samples covering a broad range of atmospheric conditions, GPR emulators can reconstruct the simulated spectral data with relative errors below 1% for the 95th percentile. These emulators reduce the processing time from days to minutes, preserving sufficient accuracy for atmospheric correction and providing model uncertainties and derivatives. We provide a set of guidelines and tools to design and generate accurate emulators for satellite data processing applications.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3071376</identifier><identifier>PMID: 36082135</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Approximation algorithms ; Atmospheric conditions ; Atmospheric correction ; Atmospheric modeling ; Atmospheric models ; Components ; Computation ; Computational modeling ; Computer applications ; Data analysis ; Data processing ; Emulation ; Emulators ; Gaussian process ; hyperspectral ; Interpolation ; Light propagation ; Lookup tables ; Mathematical models ; MODTRAN ; Principal components analysis ; Radiative transfer ; Regression models ; Simulation ; Spectral resolution ; Statistical analysis ; Statistical methods ; Statistical models ; Table lookup ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-e73c48c29dc74e0a21aefe4e233aceb684992702177f7965c63151d5f1810823</citedby><cites>FETCH-LOGICAL-c447t-e73c48c29dc74e0a21aefe4e233aceb684992702177f7965c63151d5f1810823</cites><orcidid>0000-0003-3188-1448 ; 0000-0002-6313-2081 ; 0000-0003-1683-2138 ; 0000-0002-3014-3921 ; 0000-0002-5283-3333 ; 0000-0001-9291-064X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9409528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9409528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36082135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vicent Servera, Jorge</creatorcontrib><creatorcontrib>Rivera-Caicedo, Juan Pablo</creatorcontrib><creatorcontrib>Verrelst, Jochem</creatorcontrib><creatorcontrib>Munoz-Mari, Jordi</creatorcontrib><creatorcontrib>Sabater, Neus</creatorcontrib><creatorcontrib>Berthelot, Beatrice</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><creatorcontrib>Moreno, Jose</creatorcontrib><title>Systematic Assessment of MODTRAN Emulators for Atmospheric Correction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><addtitle>IEEE Trans Geosci Remote Sens</addtitle><description>Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number of RTM runs. However, a concern is whether the emulator reaches sufficient accuracy for atmospheric correction. Therefore, we have performed a systematic assessment of key aspects that impact the precision of emulating MODTRAN: 1) regression algorithm; 2) training database size; 3) dimensionality reduction (DR) method and a number of components; and 4) spectral resolution. The Gaussian processes regression (GPR) was found the most accurate emulator. The principal component analysis remains a robust DR method and nearly 20 components reach sufficient precision. Based on a database of 1000 samples covering a broad range of atmospheric conditions, GPR emulators can reconstruct the simulated spectral data with relative errors below 1% for the 95th percentile. These emulators reduce the processing time from days to minutes, preserving sufficient accuracy for atmospheric correction and providing model uncertainties and derivatives. We provide a set of guidelines and tools to design and generate accurate emulators for satellite data processing applications.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Atmospheric conditions</subject><subject>Atmospheric correction</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Components</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Emulation</subject><subject>Emulators</subject><subject>Gaussian process</subject><subject>hyperspectral</subject><subject>Interpolation</subject><subject>Light propagation</subject><subject>Lookup tables</subject><subject>Mathematical models</subject><subject>MODTRAN</subject><subject>Principal components analysis</subject><subject>Radiative transfer</subject><subject>Regression models</subject><subject>Simulation</subject><subject>Spectral resolution</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Table lookup</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV9LIzEUxcPislZ3P4AIMuCLL1Nzk0wyeRFKt_4BV0H7HmJ6R0dmJjWZEfrtN6W1qE_34f7O4RwOIUdAxwBUn8-vHh7HjDIYc6qAK_mDjKAoypxKIfbIiIKWOSs12ycHMb5SCqIA9Yvsc0lLBrwYkdnjKvbY2r522SRGjLHFrs98lf27_zt_mNxls3ZobO9DzCofsknf-rh8wZD4qQ8BXV_77jf5Wdkm4p_tPSTzy9l8ep3f3l_dTCe3uRNC9Tkq7kTpmF44JZBaBhYrFMg4tw6fZCm0Zir1UapSWhZOcihgUVRQQgrMD8nFxnY5PLW4cClpsI1Zhrq1YWW8rc3XT1e_mGf_bpQEzhVNBmdbg-DfBoy9aevosGlsh36IhilgpRBcq4SefkNf_RC61M4wCUxIKdnaEDaUCz7GgNUuDFCz3sisNzLrjcx2o6Q5-dxip_gYJQHHG6BGxN1bC6oLVvL_nz2U5Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Vicent Servera, Jorge</creator><creator>Rivera-Caicedo, Juan Pablo</creator><creator>Verrelst, Jochem</creator><creator>Munoz-Mari, Jordi</creator><creator>Sabater, Neus</creator><creator>Berthelot, Beatrice</creator><creator>Camps-Valls, Gustau</creator><creator>Moreno, Jose</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3188-1448</orcidid><orcidid>https://orcid.org/0000-0002-6313-2081</orcidid><orcidid>https://orcid.org/0000-0003-1683-2138</orcidid><orcidid>https://orcid.org/0000-0002-3014-3921</orcidid><orcidid>https://orcid.org/0000-0002-5283-3333</orcidid><orcidid>https://orcid.org/0000-0001-9291-064X</orcidid></search><sort><creationdate>20220101</creationdate><title>Systematic Assessment of MODTRAN Emulators for Atmospheric Correction</title><author>Vicent Servera, Jorge ; Rivera-Caicedo, Juan Pablo ; Verrelst, Jochem ; Munoz-Mari, Jordi ; Sabater, Neus ; Berthelot, Beatrice ; Camps-Valls, Gustau ; Moreno, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-e73c48c29dc74e0a21aefe4e233aceb684992702177f7965c63151d5f1810823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Atmospheric conditions</topic><topic>Atmospheric correction</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Components</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Emulation</topic><topic>Emulators</topic><topic>Gaussian process</topic><topic>hyperspectral</topic><topic>Interpolation</topic><topic>Light propagation</topic><topic>Lookup tables</topic><topic>Mathematical models</topic><topic>MODTRAN</topic><topic>Principal components analysis</topic><topic>Radiative transfer</topic><topic>Regression models</topic><topic>Simulation</topic><topic>Spectral resolution</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Table lookup</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicent Servera, Jorge</creatorcontrib><creatorcontrib>Rivera-Caicedo, Juan Pablo</creatorcontrib><creatorcontrib>Verrelst, Jochem</creatorcontrib><creatorcontrib>Munoz-Mari, Jordi</creatorcontrib><creatorcontrib>Sabater, Neus</creatorcontrib><creatorcontrib>Berthelot, Beatrice</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><creatorcontrib>Moreno, Jose</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vicent Servera, Jorge</au><au>Rivera-Caicedo, Juan Pablo</au><au>Verrelst, Jochem</au><au>Munoz-Mari, Jordi</au><au>Sabater, Neus</au><au>Berthelot, Beatrice</au><au>Camps-Valls, Gustau</au><au>Moreno, Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Assessment of MODTRAN Emulators for Atmospheric Correction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><addtitle>IEEE Trans Geosci Remote Sens</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number of RTM runs. However, a concern is whether the emulator reaches sufficient accuracy for atmospheric correction. Therefore, we have performed a systematic assessment of key aspects that impact the precision of emulating MODTRAN: 1) regression algorithm; 2) training database size; 3) dimensionality reduction (DR) method and a number of components; and 4) spectral resolution. The Gaussian processes regression (GPR) was found the most accurate emulator. The principal component analysis remains a robust DR method and nearly 20 components reach sufficient precision. Based on a database of 1000 samples covering a broad range of atmospheric conditions, GPR emulators can reconstruct the simulated spectral data with relative errors below 1% for the 95th percentile. These emulators reduce the processing time from days to minutes, preserving sufficient accuracy for atmospheric correction and providing model uncertainties and derivatives. We provide a set of guidelines and tools to design and generate accurate emulators for satellite data processing applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36082135</pmid><doi>10.1109/TGRS.2021.3071376</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3188-1448</orcidid><orcidid>https://orcid.org/0000-0002-6313-2081</orcidid><orcidid>https://orcid.org/0000-0003-1683-2138</orcidid><orcidid>https://orcid.org/0000-0002-3014-3921</orcidid><orcidid>https://orcid.org/0000-0002-5283-3333</orcidid><orcidid>https://orcid.org/0000-0001-9291-064X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-17
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_2712844397
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Approximation algorithms
Atmospheric conditions
Atmospheric correction
Atmospheric modeling
Atmospheric models
Components
Computation
Computational modeling
Computer applications
Data analysis
Data processing
Emulation
Emulators
Gaussian process
hyperspectral
Interpolation
Light propagation
Lookup tables
Mathematical models
MODTRAN
Principal components analysis
Radiative transfer
Regression models
Simulation
Spectral resolution
Statistical analysis
Statistical methods
Statistical models
Table lookup
Training
title Systematic Assessment of MODTRAN Emulators for Atmospheric Correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Assessment%20of%20MODTRAN%20Emulators%20for%20Atmospheric%20Correction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Vicent%20Servera,%20Jorge&rft.date=2022-01-01&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3071376&rft_dat=%3Cproquest_RIE%3E2612466620%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612466620&rft_id=info:pmid/36082135&rft_ieee_id=9409528&rfr_iscdi=true