Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations

This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2002-10, Vol.19 (10), p.1500-1515
Hauptverfasser: Lee, Hai-Tien, Ellingson, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1515
container_issue 10
container_start_page 1500
container_title Journal of atmospheric and oceanic technology
container_volume 19
creator Lee, Hai-Tien
Ellingson, Robert G.
description This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.
doi_str_mv 10.1175/1520-0426(2002)019<1500:DOANSM>2.0.CO;2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27127705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27127705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ac163683a9eb3c1e5510f73e346b509910f7ed499f8e6b5267c654cc1bae64223</originalsourceid><addsrcrecordid>eNpdkcFOGzEQhi3USk0p72BxQHDYMLbXaxZQJZRQWimwEilny3FmYdHGTm0nUZ-gr10vqTj0NJp_Po1G8xFyzmDMmJLnTHIooOTVKQfgZ8DqayYBLqfNzcP8_isfw3jSXPEDMnonP5ARKFEXIBX_RD7H-AoATLBqRP5McYu9X6_QJepbauiDd33n0AQ6TyZ1MXXW9PQe04tf0tYHepujVZ64Z5pekE79zu1MWNKZd887s0X6aJZdnntHTXpD5pvQGou0DX5F5yZh33cJabOIGLZvZPxCPramj3j0rx6Sp2-3Pyffi1lz92NyMyusKCEVxrJKVBfC1LgQlqGUDFolUJTVQkJdDx0uy7puLzAnvFK2kqW1bGGwKjkXh-Rkv3cd_K8NxqRXXbT5IOPQb6LminGlQGbw-D_w1W-Cy7dpzrlUZX5ghu72kA0-xoCtXof8m_BbM9CDLT040IMDPdjS2ZYebOm9LZ0TPWk0F38ByXqMsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222574013</pqid></control><display><type>article</type><title>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Hai-Tien ; Ellingson, Robert G.</creator><creatorcontrib>Lee, Hai-Tien ; Ellingson, Robert G.</creatorcontrib><description>This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/1520-0426(2002)019&lt;1500:DOANSM&gt;2.0.CO;2</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Climate studies ; Radiation ; Satellites ; Statistical analysis ; Statistical methods</subject><ispartof>Journal of atmospheric and oceanic technology, 2002-10, Vol.19 (10), p.1500-1515</ispartof><rights>Copyright American Meteorological Society Oct 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-ac163683a9eb3c1e5510f73e346b509910f7ed499f8e6b5267c654cc1bae64223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>Lee, Hai-Tien</creatorcontrib><creatorcontrib>Ellingson, Robert G.</creatorcontrib><title>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</title><title>Journal of atmospheric and oceanic technology</title><description>This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.</description><subject>Atmosphere</subject><subject>Climate studies</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkcFOGzEQhi3USk0p72BxQHDYMLbXaxZQJZRQWimwEilny3FmYdHGTm0nUZ-gr10vqTj0NJp_Po1G8xFyzmDMmJLnTHIooOTVKQfgZ8DqayYBLqfNzcP8_isfw3jSXPEDMnonP5ARKFEXIBX_RD7H-AoATLBqRP5McYu9X6_QJepbauiDd33n0AQ6TyZ1MXXW9PQe04tf0tYHepujVZ64Z5pekE79zu1MWNKZd887s0X6aJZdnntHTXpD5pvQGou0DX5F5yZh33cJabOIGLZvZPxCPramj3j0rx6Sp2-3Pyffi1lz92NyMyusKCEVxrJKVBfC1LgQlqGUDFolUJTVQkJdDx0uy7puLzAnvFK2kqW1bGGwKjkXh-Rkv3cd_K8NxqRXXbT5IOPQb6LminGlQGbw-D_w1W-Cy7dpzrlUZX5ghu72kA0-xoCtXof8m_BbM9CDLT040IMDPdjS2ZYebOm9LZ0TPWk0F38ByXqMsw</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Lee, Hai-Tien</creator><creator>Ellingson, Robert G.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20021001</creationdate><title>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</title><author>Lee, Hai-Tien ; Ellingson, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ac163683a9eb3c1e5510f73e346b509910f7ed499f8e6b5267c654cc1bae64223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Atmosphere</topic><topic>Climate studies</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hai-Tien</creatorcontrib><creatorcontrib>Ellingson, Robert G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hai-Tien</au><au>Ellingson, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>19</volume><issue>10</issue><spage>1500</spage><epage>1515</epage><pages>1500-1515</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0426(2002)019&lt;1500:DOANSM&gt;2.0.CO;2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2002-10, Vol.19 (10), p.1500-1515
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_miscellaneous_27127705
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmosphere
Climate studies
Radiation
Satellites
Statistical analysis
Statistical methods
title Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Nonlinear%20Statistical%20Method%20for%20Estimating%20the%20Downward%20Longwave%20Radiation%20at%20the%20Surface%20from%20Satellite%20Observations&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Lee,%20Hai-Tien&rft.date=2002-10-01&rft.volume=19&rft.issue=10&rft.spage=1500&rft.epage=1515&rft.pages=1500-1515&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/1520-0426(2002)019%3C1500:DOANSM%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E27127705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222574013&rft_id=info:pmid/&rfr_iscdi=true