Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations
This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2002-10, Vol.19 (10), p.1500-1515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1515 |
---|---|
container_issue | 10 |
container_start_page | 1500 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 19 |
creator | Lee, Hai-Tien Ellingson, Robert G. |
description | This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study. |
doi_str_mv | 10.1175/1520-0426(2002)019<1500:DOANSM>2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27127705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27127705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ac163683a9eb3c1e5510f73e346b509910f7ed499f8e6b5267c654cc1bae64223</originalsourceid><addsrcrecordid>eNpdkcFOGzEQhi3USk0p72BxQHDYMLbXaxZQJZRQWimwEilny3FmYdHGTm0nUZ-gr10vqTj0NJp_Po1G8xFyzmDMmJLnTHIooOTVKQfgZ8DqayYBLqfNzcP8_isfw3jSXPEDMnonP5ARKFEXIBX_RD7H-AoATLBqRP5McYu9X6_QJepbauiDd33n0AQ6TyZ1MXXW9PQe04tf0tYHepujVZ64Z5pekE79zu1MWNKZd887s0X6aJZdnntHTXpD5pvQGou0DX5F5yZh33cJabOIGLZvZPxCPramj3j0rx6Sp2-3Pyffi1lz92NyMyusKCEVxrJKVBfC1LgQlqGUDFolUJTVQkJdDx0uy7puLzAnvFK2kqW1bGGwKjkXh-Rkv3cd_K8NxqRXXbT5IOPQb6LminGlQGbw-D_w1W-Cy7dpzrlUZX5ghu72kA0-xoCtXof8m_BbM9CDLT040IMDPdjS2ZYebOm9LZ0TPWk0F38ByXqMsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222574013</pqid></control><display><type>article</type><title>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Hai-Tien ; Ellingson, Robert G.</creator><creatorcontrib>Lee, Hai-Tien ; Ellingson, Robert G.</creatorcontrib><description>This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/1520-0426(2002)019<1500:DOANSM>2.0.CO;2</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Climate studies ; Radiation ; Satellites ; Statistical analysis ; Statistical methods</subject><ispartof>Journal of atmospheric and oceanic technology, 2002-10, Vol.19 (10), p.1500-1515</ispartof><rights>Copyright American Meteorological Society Oct 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-ac163683a9eb3c1e5510f73e346b509910f7ed499f8e6b5267c654cc1bae64223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>Lee, Hai-Tien</creatorcontrib><creatorcontrib>Ellingson, Robert G.</creatorcontrib><title>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</title><title>Journal of atmospheric and oceanic technology</title><description>This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.</description><subject>Atmosphere</subject><subject>Climate studies</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkcFOGzEQhi3USk0p72BxQHDYMLbXaxZQJZRQWimwEilny3FmYdHGTm0nUZ-gr10vqTj0NJp_Po1G8xFyzmDMmJLnTHIooOTVKQfgZ8DqayYBLqfNzcP8_isfw3jSXPEDMnonP5ARKFEXIBX_RD7H-AoATLBqRP5McYu9X6_QJepbauiDd33n0AQ6TyZ1MXXW9PQe04tf0tYHepujVZ64Z5pekE79zu1MWNKZd887s0X6aJZdnntHTXpD5pvQGou0DX5F5yZh33cJabOIGLZvZPxCPramj3j0rx6Sp2-3Pyffi1lz92NyMyusKCEVxrJKVBfC1LgQlqGUDFolUJTVQkJdDx0uy7puLzAnvFK2kqW1bGGwKjkXh-Rkv3cd_K8NxqRXXbT5IOPQb6LminGlQGbw-D_w1W-Cy7dpzrlUZX5ghu72kA0-xoCtXof8m_BbM9CDLT040IMDPdjS2ZYebOm9LZ0TPWk0F38ByXqMsw</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Lee, Hai-Tien</creator><creator>Ellingson, Robert G.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20021001</creationdate><title>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</title><author>Lee, Hai-Tien ; Ellingson, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ac163683a9eb3c1e5510f73e346b509910f7ed499f8e6b5267c654cc1bae64223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Atmosphere</topic><topic>Climate studies</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hai-Tien</creatorcontrib><creatorcontrib>Ellingson, Robert G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hai-Tien</au><au>Ellingson, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>19</volume><issue>10</issue><spage>1500</spage><epage>1515</epage><pages>1500-1515</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m^sup -2 ^for clear-sky conditions, and about 4 to 8 W m^sup -2 ^ for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies. Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m^sup -2 ^ when there is a +/-10% uncertainty in cloud amount and a+/-100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m^sup 2 ^. This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 WM^sup -2 ^ and are unbiased in most conditions. The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0426(2002)019<1500:DOANSM>2.0.CO;2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2002-10, Vol.19 (10), p.1500-1515 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_27127705 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Atmosphere Climate studies Radiation Satellites Statistical analysis Statistical methods |
title | Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Nonlinear%20Statistical%20Method%20for%20Estimating%20the%20Downward%20Longwave%20Radiation%20at%20the%20Surface%20from%20Satellite%20Observations&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Lee,%20Hai-Tien&rft.date=2002-10-01&rft.volume=19&rft.issue=10&rft.spage=1500&rft.epage=1515&rft.pages=1500-1515&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/1520-0426(2002)019%3C1500:DOANSM%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E27127705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222574013&rft_id=info:pmid/&rfr_iscdi=true |