Using neural networks to predict parameters in the hot working of aluminum alloys

The ability of an artificial neural network model, using a back-propagation learning algorithm, to predict the flow stress, roll force and roll torque obtained during the hot compression and rolling of aluminum alloys, is studied. It is shown that well-trained neural network models provide fast, acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 1999-02, Vol.86 (1-3), p.245-251
Hauptverfasser: Chun, M.S., Biglou, J., Lenard, J.G., Kim, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of an artificial neural network model, using a back-propagation learning algorithm, to predict the flow stress, roll force and roll torque obtained during the hot compression and rolling of aluminum alloys, is studied. It is shown that well-trained neural network models provide fast, accurate and consistent results, making them superior to other predictive techniques.
ISSN:0924-0136
DOI:10.1016/S0924-0136(98)00318-5