Using neural networks to predict parameters in the hot working of aluminum alloys
The ability of an artificial neural network model, using a back-propagation learning algorithm, to predict the flow stress, roll force and roll torque obtained during the hot compression and rolling of aluminum alloys, is studied. It is shown that well-trained neural network models provide fast, acc...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 1999-02, Vol.86 (1-3), p.245-251 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability of an artificial neural network model, using a back-propagation learning algorithm, to predict the flow stress, roll force and roll torque obtained during the hot compression and rolling of aluminum alloys, is studied. It is shown that well-trained neural network models provide fast, accurate and consistent results, making them superior to other predictive techniques. |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/S0924-0136(98)00318-5 |