Acoustic infinite elements for non-separable geometries

We present new infinite element formulations for solving acoustic scattering and radiation problems in the exterior of long, slender bodies. The new infinite elements are geometrically constructed from a prolate spheroid inscribed by the scatterer. These elements need not begin on a level surface of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2002-08, Vol.191 (37), p.4123-4139
Hauptverfasser: Shirron, Joseph J., Dey, Saikat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4139
container_issue 37
container_start_page 4123
container_title Computer methods in applied mechanics and engineering
container_volume 191
creator Shirron, Joseph J.
Dey, Saikat
description We present new infinite element formulations for solving acoustic scattering and radiation problems in the exterior of long, slender bodies. The new infinite elements are geometrically constructed from a prolate spheroid inscribed by the scatterer. These elements need not begin on a level surface of the prolate spheroidal coordinate system. Instead, they may be attached to any convex surface, including that of the scatterer itself. This scheme reduces, or even completely eliminates, finite element modeling of the exterior medium. The formulations may easily be extended to the cases of an interior oblate spheroid or ellipsoid. We present both conjugated and unconjugated formulations without any weighting factors, although it would be simple to include them. We describe a fast numerical scheme for computing the element integrals based on Chebychev approximation. We include numerical results for scattering from spheres and capped cylinders. These results demonstrate the accuracy and the dramatic reduction in computational expense of our new formulations compared to other coupled finite element/infinite element methods.
doi_str_mv 10.1016/S0045-7825(02)00355-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27116086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782502003559</els_id><sourcerecordid>27116086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-597cd8a55ed036f44b746b9a5510cce15a0313bb4b922ebe25b00056a6cb7ec93</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfGyy2ZOU4hcUPKjnkMzOSmSbrclW8N-b2qJH5zIwPDPvOy8hp4xeMcrU9TOllSxrzeUF5ZeUCinLZo9MmK6bkjOh98nkFzkkRym901ya8QmpZzCs0-ih8KHzwY9YYI9LDGMquiEWYQhlwpWN1vVYvOGwxDF6TMfkoLN9wpNdn5LXu9uX-UO5eLp_nM8WJQilx1I2NbTaSoktFaqrKldXyjV5wCgAMmmpYMK5yjWco0MuXXYmlVXgaoRGTMn59u4qDh9rTKNZ-gTY9zZgNm54zZiiWmVQbkGIQ0oRO7OKfmnjl2HUbGIyPzGZTQaGcvMTk9kInO0EbALbd9EG8OlvWehKZJHM3Ww5zN9-eowmgccA2PqIMJp28P8ofQMAonu7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27116086</pqid></control><display><type>article</type><title>Acoustic infinite elements for non-separable geometries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shirron, Joseph J. ; Dey, Saikat</creator><creatorcontrib>Shirron, Joseph J. ; Dey, Saikat</creatorcontrib><description>We present new infinite element formulations for solving acoustic scattering and radiation problems in the exterior of long, slender bodies. The new infinite elements are geometrically constructed from a prolate spheroid inscribed by the scatterer. These elements need not begin on a level surface of the prolate spheroidal coordinate system. Instead, they may be attached to any convex surface, including that of the scatterer itself. This scheme reduces, or even completely eliminates, finite element modeling of the exterior medium. The formulations may easily be extended to the cases of an interior oblate spheroid or ellipsoid. We present both conjugated and unconjugated formulations without any weighting factors, although it would be simple to include them. We describe a fast numerical scheme for computing the element integrals based on Chebychev approximation. We include numerical results for scattering from spheres and capped cylinders. These results demonstrate the accuracy and the dramatic reduction in computational expense of our new formulations compared to other coupled finite element/infinite element methods.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(02)00355-9</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustics ; Computational techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; Structural acoustics and vibration</subject><ispartof>Computer methods in applied mechanics and engineering, 2002-08, Vol.191 (37), p.4123-4139</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-597cd8a55ed036f44b746b9a5510cce15a0313bb4b922ebe25b00056a6cb7ec93</citedby><cites>FETCH-LOGICAL-c368t-597cd8a55ed036f44b746b9a5510cce15a0313bb4b922ebe25b00056a6cb7ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7825(02)00355-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13843271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirron, Joseph J.</creatorcontrib><creatorcontrib>Dey, Saikat</creatorcontrib><title>Acoustic infinite elements for non-separable geometries</title><title>Computer methods in applied mechanics and engineering</title><description>We present new infinite element formulations for solving acoustic scattering and radiation problems in the exterior of long, slender bodies. The new infinite elements are geometrically constructed from a prolate spheroid inscribed by the scatterer. These elements need not begin on a level surface of the prolate spheroidal coordinate system. Instead, they may be attached to any convex surface, including that of the scatterer itself. This scheme reduces, or even completely eliminates, finite element modeling of the exterior medium. The formulations may easily be extended to the cases of an interior oblate spheroid or ellipsoid. We present both conjugated and unconjugated formulations without any weighting factors, although it would be simple to include them. We describe a fast numerical scheme for computing the element integrals based on Chebychev approximation. We include numerical results for scattering from spheres and capped cylinders. These results demonstrate the accuracy and the dramatic reduction in computational expense of our new formulations compared to other coupled finite element/infinite element methods.</description><subject>Acoustics</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Structural acoustics and vibration</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiLoofVfGyy2ZOU4hcUPKjnkMzOSmSbrclW8N-b2qJH5zIwPDPvOy8hp4xeMcrU9TOllSxrzeUF5ZeUCinLZo9MmK6bkjOh98nkFzkkRym901ya8QmpZzCs0-ih8KHzwY9YYI9LDGMquiEWYQhlwpWN1vVYvOGwxDF6TMfkoLN9wpNdn5LXu9uX-UO5eLp_nM8WJQilx1I2NbTaSoktFaqrKldXyjV5wCgAMmmpYMK5yjWco0MuXXYmlVXgaoRGTMn59u4qDh9rTKNZ-gTY9zZgNm54zZiiWmVQbkGIQ0oRO7OKfmnjl2HUbGIyPzGZTQaGcvMTk9kInO0EbALbd9EG8OlvWehKZJHM3Ww5zN9-eowmgccA2PqIMJp28P8ofQMAonu7</recordid><startdate>20020816</startdate><enddate>20020816</enddate><creator>Shirron, Joseph J.</creator><creator>Dey, Saikat</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020816</creationdate><title>Acoustic infinite elements for non-separable geometries</title><author>Shirron, Joseph J. ; Dey, Saikat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-597cd8a55ed036f44b746b9a5510cce15a0313bb4b922ebe25b00056a6cb7ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acoustics</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirron, Joseph J.</creatorcontrib><creatorcontrib>Dey, Saikat</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirron, Joseph J.</au><au>Dey, Saikat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic infinite elements for non-separable geometries</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2002-08-16</date><risdate>2002</risdate><volume>191</volume><issue>37</issue><spage>4123</spage><epage>4139</epage><pages>4123-4139</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>We present new infinite element formulations for solving acoustic scattering and radiation problems in the exterior of long, slender bodies. The new infinite elements are geometrically constructed from a prolate spheroid inscribed by the scatterer. These elements need not begin on a level surface of the prolate spheroidal coordinate system. Instead, they may be attached to any convex surface, including that of the scatterer itself. This scheme reduces, or even completely eliminates, finite element modeling of the exterior medium. The formulations may easily be extended to the cases of an interior oblate spheroid or ellipsoid. We present both conjugated and unconjugated formulations without any weighting factors, although it would be simple to include them. We describe a fast numerical scheme for computing the element integrals based on Chebychev approximation. We include numerical results for scattering from spheres and capped cylinders. These results demonstrate the accuracy and the dramatic reduction in computational expense of our new formulations compared to other coupled finite element/infinite element methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(02)00355-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2002-08, Vol.191 (37), p.4123-4139
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_27116086
source ScienceDirect Journals (5 years ago - present)
subjects Acoustics
Computational techniques
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Structural acoustics and vibration
title Acoustic infinite elements for non-separable geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20infinite%20elements%20for%20non-separable%20geometries&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Shirron,%20Joseph%20J.&rft.date=2002-08-16&rft.volume=191&rft.issue=37&rft.spage=4123&rft.epage=4139&rft.pages=4123-4139&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(02)00355-9&rft_dat=%3Cproquest_cross%3E27116086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27116086&rft_id=info:pmid/&rft_els_id=S0045782502003559&rfr_iscdi=true