A shear-lag model for a broken fiber embedded in a composite with a ductile matrix

A shear-lag model has been developed for the prediction of stress recovery in a broken fiber embedded in a ductile-matrix composite. The model builds on the original shear-lag model of (Cox HL. Br J Appl Phys 1952;3:72–9) by introducing plasticity constitutive behavior into the matrix. The matrix is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 1999-02, Vol.59 (3), p.447-457
Hauptverfasser: Landis, Chad M., McMeeking, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 3
container_start_page 447
container_title Composites science and technology
container_volume 59
creator Landis, Chad M.
McMeeking, Robert M.
description A shear-lag model has been developed for the prediction of stress recovery in a broken fiber embedded in a ductile-matrix composite. The model builds on the original shear-lag model of (Cox HL. Br J Appl Phys 1952;3:72–9) by introducing plasticity constitutive behavior into the matrix. The matrix is assumed to be an elastic/perfectly-plastic material that deforms according to J2 flow theory. The use of a flow rule to govern the matrix deformation in this model differs from previous attempts to represent plasticity in the matrix. A non-linear partial differential equation is obtained from the model. Numerical solutions to the equation are obtained and compared to simpler shear-lag models which assume sliding at the fiber/matrix interface controlled by a uniform shear stress. Axisymmetric finite-element calculations were done to assess the validity of the shear-lag model. It proves to be in good agreement with the finite-element analysis. Predictions of the shear-lag calculations suggest that the global load-sharing (GLS) strength model of (Curtin WA. J Am Ceram Soc 1991;74:2837–45) is valid for a composite with a yielding matrix that is elastically rigid.
doi_str_mv 10.1016/S0266-3538(98)00091-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27113894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353898000918</els_id><sourcerecordid>27113894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3e0f26d00a109a10bfd4312b8ddfc0c64091556d7f8f8af8beddf829f20af2a83</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCEHET1Uk3SbpidZFr9gQfDjHNJk4kbbZk26fvx7U3fRo4dhYOaZeWdehA4pOaOE8vMHwjjP8iIXJ5U4JYRUNBNbaERFWWWUFGQbjX6RXbQX40uCyqJiI3Q_xXEBKmSNesatN9Bg6wNWuA7-FTpsXQ0BQ1uDMWCw61JL-3bpo-sBf7h-kQpmpXvXAG5VH9znPtqxqolwsMlj9HR1-Ti7yeZ317ez6TzTOS_7LAdiGTeEKEqqFLU1k5yyWhhjNdF8kt4oCm5KK6xQVgwXWMEqy4iyTIl8jI7Xe5fBv60g9rJ1UUPTqA78KkpWUpqLapLAYg3q4GMMYOUyuFaFL0mJHByUPw7KwR5ZCfnjoBwEjjYCKmrV2KA67eLfcMlJmWbG6GKNQXr23UGQUTvoNBgXQPfSePeP0DcQIYTH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27113894</pqid></control><display><type>article</type><title>A shear-lag model for a broken fiber embedded in a composite with a ductile matrix</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Landis, Chad M. ; McMeeking, Robert M.</creator><creatorcontrib>Landis, Chad M. ; McMeeking, Robert M.</creatorcontrib><description>A shear-lag model has been developed for the prediction of stress recovery in a broken fiber embedded in a ductile-matrix composite. The model builds on the original shear-lag model of (Cox HL. Br J Appl Phys 1952;3:72–9) by introducing plasticity constitutive behavior into the matrix. The matrix is assumed to be an elastic/perfectly-plastic material that deforms according to J2 flow theory. The use of a flow rule to govern the matrix deformation in this model differs from previous attempts to represent plasticity in the matrix. A non-linear partial differential equation is obtained from the model. Numerical solutions to the equation are obtained and compared to simpler shear-lag models which assume sliding at the fiber/matrix interface controlled by a uniform shear stress. Axisymmetric finite-element calculations were done to assess the validity of the shear-lag model. It proves to be in good agreement with the finite-element analysis. Predictions of the shear-lag calculations suggest that the global load-sharing (GLS) strength model of (Curtin WA. J Am Ceram Soc 1991;74:2837–45) is valid for a composite with a yielding matrix that is elastically rigid.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/S0266-3538(98)00091-8</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; D. Fiber composite ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fractures ; Fundamental areas of phenomenology (including applications) ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Physics ; Plasticity ; Shear-lag ; Solid mechanics ; Stress analysis ; Structural and continuum mechanics</subject><ispartof>Composites science and technology, 1999-02, Vol.59 (3), p.447-457</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3e0f26d00a109a10bfd4312b8ddfc0c64091556d7f8f8af8beddf829f20af2a83</citedby><cites>FETCH-LOGICAL-c367t-3e0f26d00a109a10bfd4312b8ddfc0c64091556d7f8f8af8beddf829f20af2a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0266-3538(98)00091-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1760735$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Landis, Chad M.</creatorcontrib><creatorcontrib>McMeeking, Robert M.</creatorcontrib><title>A shear-lag model for a broken fiber embedded in a composite with a ductile matrix</title><title>Composites science and technology</title><description>A shear-lag model has been developed for the prediction of stress recovery in a broken fiber embedded in a ductile-matrix composite. The model builds on the original shear-lag model of (Cox HL. Br J Appl Phys 1952;3:72–9) by introducing plasticity constitutive behavior into the matrix. The matrix is assumed to be an elastic/perfectly-plastic material that deforms according to J2 flow theory. The use of a flow rule to govern the matrix deformation in this model differs from previous attempts to represent plasticity in the matrix. A non-linear partial differential equation is obtained from the model. Numerical solutions to the equation are obtained and compared to simpler shear-lag models which assume sliding at the fiber/matrix interface controlled by a uniform shear stress. Axisymmetric finite-element calculations were done to assess the validity of the shear-lag model. It proves to be in good agreement with the finite-element analysis. Predictions of the shear-lag calculations suggest that the global load-sharing (GLS) strength model of (Curtin WA. J Am Ceram Soc 1991;74:2837–45) is valid for a composite with a yielding matrix that is elastically rigid.</description><subject>Applied sciences</subject><subject>D. Fiber composite</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fractures</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Shear-lag</subject><subject>Solid mechanics</subject><subject>Stress analysis</subject><subject>Structural and continuum mechanics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCEHET1Uk3SbpidZFr9gQfDjHNJk4kbbZk26fvx7U3fRo4dhYOaZeWdehA4pOaOE8vMHwjjP8iIXJ5U4JYRUNBNbaERFWWWUFGQbjX6RXbQX40uCyqJiI3Q_xXEBKmSNesatN9Bg6wNWuA7-FTpsXQ0BQ1uDMWCw61JL-3bpo-sBf7h-kQpmpXvXAG5VH9znPtqxqolwsMlj9HR1-Ti7yeZ317ez6TzTOS_7LAdiGTeEKEqqFLU1k5yyWhhjNdF8kt4oCm5KK6xQVgwXWMEqy4iyTIl8jI7Xe5fBv60g9rJ1UUPTqA78KkpWUpqLapLAYg3q4GMMYOUyuFaFL0mJHByUPw7KwR5ZCfnjoBwEjjYCKmrV2KA67eLfcMlJmWbG6GKNQXr23UGQUTvoNBgXQPfSePeP0DcQIYTH</recordid><startdate>199902</startdate><enddate>199902</enddate><creator>Landis, Chad M.</creator><creator>McMeeking, Robert M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>199902</creationdate><title>A shear-lag model for a broken fiber embedded in a composite with a ductile matrix</title><author>Landis, Chad M. ; McMeeking, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3e0f26d00a109a10bfd4312b8ddfc0c64091556d7f8f8af8beddf829f20af2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>D. Fiber composite</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fractures</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Shear-lag</topic><topic>Solid mechanics</topic><topic>Stress analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landis, Chad M.</creatorcontrib><creatorcontrib>McMeeking, Robert M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landis, Chad M.</au><au>McMeeking, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shear-lag model for a broken fiber embedded in a composite with a ductile matrix</atitle><jtitle>Composites science and technology</jtitle><date>1999-02</date><risdate>1999</risdate><volume>59</volume><issue>3</issue><spage>447</spage><epage>457</epage><pages>447-457</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>A shear-lag model has been developed for the prediction of stress recovery in a broken fiber embedded in a ductile-matrix composite. The model builds on the original shear-lag model of (Cox HL. Br J Appl Phys 1952;3:72–9) by introducing plasticity constitutive behavior into the matrix. The matrix is assumed to be an elastic/perfectly-plastic material that deforms according to J2 flow theory. The use of a flow rule to govern the matrix deformation in this model differs from previous attempts to represent plasticity in the matrix. A non-linear partial differential equation is obtained from the model. Numerical solutions to the equation are obtained and compared to simpler shear-lag models which assume sliding at the fiber/matrix interface controlled by a uniform shear stress. Axisymmetric finite-element calculations were done to assess the validity of the shear-lag model. It proves to be in good agreement with the finite-element analysis. Predictions of the shear-lag calculations suggest that the global load-sharing (GLS) strength model of (Curtin WA. J Am Ceram Soc 1991;74:2837–45) is valid for a composite with a yielding matrix that is elastically rigid.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0266-3538(98)00091-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 1999-02, Vol.59 (3), p.447-457
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_27113894
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
D. Fiber composite
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fractures
Fundamental areas of phenomenology (including applications)
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Physics
Plasticity
Shear-lag
Solid mechanics
Stress analysis
Structural and continuum mechanics
title A shear-lag model for a broken fiber embedded in a composite with a ductile matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shear-lag%20model%20for%20a%20broken%20fiber%20embedded%20in%20a%20composite%20with%20a%20ductile%20matrix&rft.jtitle=Composites%20science%20and%20technology&rft.au=Landis,%20Chad%20M.&rft.date=1999-02&rft.volume=59&rft.issue=3&rft.spage=447&rft.epage=457&rft.pages=447-457&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/S0266-3538(98)00091-8&rft_dat=%3Cproquest_cross%3E27113894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27113894&rft_id=info:pmid/&rft_els_id=S0266353898000918&rfr_iscdi=true