Tunability of Self-Organized Structures Based on Thermodynamic Flux

Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2022-09, Vol.38 (37), p.11330-11336
Hauptverfasser: Nabika, Hideki, Tsukada, Kanta, Itatani, Masaki, Ban, Takahiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11336
container_issue 37
container_start_page 11330
container_title Langmuir
container_volume 38
creator Nabika, Hideki
Tsukada, Kanta
Itatani, Masaki
Ban, Takahiko
description Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this study, the selection rule for the self-organization associated with a reaction–diffusion system was explored using the Liesegang phenomenon, by which a periodic precipitation pattern is formed as a model system. Experiments were conducted by systematically changing the mass flux. At low mass fluxes, a vertically periodic pattern was formed, whereas at high mass fluxes, a horizontally periodic pattern was formed. The results inferred that a structural vertical-to-horizontal periodicity transition occurred in the self-organized periodic structure at the crossover flux at which the entropy production rate reversed. Numerical analyses attributed the as-observed flux-dependent structural transition to the selection of the self-organized pattern with a higher entropy production rate. These findings contribute to our understanding of how nature controls self-organized structures and geometry, potentially facilitating the development of novel designs, syntheses, and fabrication processes for well-controlled organized functional structures.
doi_str_mv 10.1021/acs.langmuir.2c01602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2711308465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711308465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-a1e560dae83311a99753d18cc56e6ad60f25943f044db1c2fe155086dcde89893</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMevWydyddujlqsCoUeWs8hTbJ1y37UZAPWX-9K9eppYOZ9Bt6HkFuEGQLFe2PjrDHdrk11mFELKIGekQkKCrkoaXFOJlBwlhdcsktyFeMeABTjakLmm9SZbd3UwzHrq2ztmypfhZ3p6i_vsvUQkh1S8DF7NHFc9F22efeh7d2xM21ts0WTPq_JRWWa6G9-55S8LZ4285d8uXp-nT8sc8MUDrlBLyQ440vGEI1ShWAOS2uF9NI4CRUVirMKOHdbtLTyKASU0lnnS1UqNiV3p7-H0H8kHwfd1tH6Zqzu-xQ1LRAZlFyKMcpPURv6GIOv9CHUrQlHjaB_nOnRmf5zpn-djRicsJ_rvk-hG_v8j3wDqE5zcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711308465</pqid></control><display><type>article</type><title>Tunability of Self-Organized Structures Based on Thermodynamic Flux</title><source>ACS Publications</source><creator>Nabika, Hideki ; Tsukada, Kanta ; Itatani, Masaki ; Ban, Takahiko</creator><creatorcontrib>Nabika, Hideki ; Tsukada, Kanta ; Itatani, Masaki ; Ban, Takahiko</creatorcontrib><description>Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this study, the selection rule for the self-organization associated with a reaction–diffusion system was explored using the Liesegang phenomenon, by which a periodic precipitation pattern is formed as a model system. Experiments were conducted by systematically changing the mass flux. At low mass fluxes, a vertically periodic pattern was formed, whereas at high mass fluxes, a horizontally periodic pattern was formed. The results inferred that a structural vertical-to-horizontal periodicity transition occurred in the self-organized periodic structure at the crossover flux at which the entropy production rate reversed. Numerical analyses attributed the as-observed flux-dependent structural transition to the selection of the self-organized pattern with a higher entropy production rate. These findings contribute to our understanding of how nature controls self-organized structures and geometry, potentially facilitating the development of novel designs, syntheses, and fabrication processes for well-controlled organized functional structures.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c01602</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2022-09, Vol.38 (37), p.11330-11336</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-a1e560dae83311a99753d18cc56e6ad60f25943f044db1c2fe155086dcde89893</citedby><cites>FETCH-LOGICAL-a391t-a1e560dae83311a99753d18cc56e6ad60f25943f044db1c2fe155086dcde89893</cites><orcidid>0000-0002-7065-6350 ; 0000-0002-7780-8433 ; 0000-0003-1025-0452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.2c01602$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c01602$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Nabika, Hideki</creatorcontrib><creatorcontrib>Tsukada, Kanta</creatorcontrib><creatorcontrib>Itatani, Masaki</creatorcontrib><creatorcontrib>Ban, Takahiko</creatorcontrib><title>Tunability of Self-Organized Structures Based on Thermodynamic Flux</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this study, the selection rule for the self-organization associated with a reaction–diffusion system was explored using the Liesegang phenomenon, by which a periodic precipitation pattern is formed as a model system. Experiments were conducted by systematically changing the mass flux. At low mass fluxes, a vertically periodic pattern was formed, whereas at high mass fluxes, a horizontally periodic pattern was formed. The results inferred that a structural vertical-to-horizontal periodicity transition occurred in the self-organized periodic structure at the crossover flux at which the entropy production rate reversed. Numerical analyses attributed the as-observed flux-dependent structural transition to the selection of the self-organized pattern with a higher entropy production rate. These findings contribute to our understanding of how nature controls self-organized structures and geometry, potentially facilitating the development of novel designs, syntheses, and fabrication processes for well-controlled organized functional structures.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMevWydyddujlqsCoUeWs8hTbJ1y37UZAPWX-9K9eppYOZ9Bt6HkFuEGQLFe2PjrDHdrk11mFELKIGekQkKCrkoaXFOJlBwlhdcsktyFeMeABTjakLmm9SZbd3UwzHrq2ztmypfhZ3p6i_vsvUQkh1S8DF7NHFc9F22efeh7d2xM21ts0WTPq_JRWWa6G9-55S8LZ4285d8uXp-nT8sc8MUDrlBLyQ440vGEI1ShWAOS2uF9NI4CRUVirMKOHdbtLTyKASU0lnnS1UqNiV3p7-H0H8kHwfd1tH6Zqzu-xQ1LRAZlFyKMcpPURv6GIOv9CHUrQlHjaB_nOnRmf5zpn-djRicsJ_rvk-hG_v8j3wDqE5zcw</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Nabika, Hideki</creator><creator>Tsukada, Kanta</creator><creator>Itatani, Masaki</creator><creator>Ban, Takahiko</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7065-6350</orcidid><orcidid>https://orcid.org/0000-0002-7780-8433</orcidid><orcidid>https://orcid.org/0000-0003-1025-0452</orcidid></search><sort><creationdate>20220920</creationdate><title>Tunability of Self-Organized Structures Based on Thermodynamic Flux</title><author>Nabika, Hideki ; Tsukada, Kanta ; Itatani, Masaki ; Ban, Takahiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-a1e560dae83311a99753d18cc56e6ad60f25943f044db1c2fe155086dcde89893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabika, Hideki</creatorcontrib><creatorcontrib>Tsukada, Kanta</creatorcontrib><creatorcontrib>Itatani, Masaki</creatorcontrib><creatorcontrib>Ban, Takahiko</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabika, Hideki</au><au>Tsukada, Kanta</au><au>Itatani, Masaki</au><au>Ban, Takahiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunability of Self-Organized Structures Based on Thermodynamic Flux</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2022-09-20</date><risdate>2022</risdate><volume>38</volume><issue>37</issue><spage>11330</spage><epage>11336</epage><pages>11330-11336</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this study, the selection rule for the self-organization associated with a reaction–diffusion system was explored using the Liesegang phenomenon, by which a periodic precipitation pattern is formed as a model system. Experiments were conducted by systematically changing the mass flux. At low mass fluxes, a vertically periodic pattern was formed, whereas at high mass fluxes, a horizontally periodic pattern was formed. The results inferred that a structural vertical-to-horizontal periodicity transition occurred in the self-organized periodic structure at the crossover flux at which the entropy production rate reversed. Numerical analyses attributed the as-observed flux-dependent structural transition to the selection of the self-organized pattern with a higher entropy production rate. These findings contribute to our understanding of how nature controls self-organized structures and geometry, potentially facilitating the development of novel designs, syntheses, and fabrication processes for well-controlled organized functional structures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.2c01602</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7065-6350</orcidid><orcidid>https://orcid.org/0000-0002-7780-8433</orcidid><orcidid>https://orcid.org/0000-0003-1025-0452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2022-09, Vol.38 (37), p.11330-11336
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2711308465
source ACS Publications
title Tunability of Self-Organized Structures Based on Thermodynamic Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunability%20of%20Self-Organized%20Structures%20Based%20on%20Thermodynamic%20Flux&rft.jtitle=Langmuir&rft.au=Nabika,%20Hideki&rft.date=2022-09-20&rft.volume=38&rft.issue=37&rft.spage=11330&rft.epage=11336&rft.pages=11330-11336&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c01602&rft_dat=%3Cproquest_cross%3E2711308465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711308465&rft_id=info:pmid/&rfr_iscdi=true