Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances

Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian Association of Radiologists Journal 2023-05, Vol.74 (2), p.351-361
Hauptverfasser: Barat, Maxime, Marchese, Ugo, Pellat, Anna, Dohan, Anthony, Coriat, Romain, Hoeffel, Christine, Fishman, Elliot K., Cassinotto, Christophe, Chu, Linda, Soyer, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 2
container_start_page 351
container_title Canadian Association of Radiologists Journal
container_volume 74
creator Barat, Maxime
Marchese, Ugo
Pellat, Anna
Dohan, Anthony
Coriat, Romain
Hoeffel, Christine
Fishman, Elliot K.
Cassinotto, Christophe
Chu, Linda
Soyer, Philippe
description Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
doi_str_mv 10.1177/08465371221124927
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2710972207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_08465371221124927</sage_id><sourcerecordid>2710972207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-117d672f4e9d2ea6c0e616f8c99fdef2e9f25b0de4ae732304fe6222591fbb4e3</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_Agis7pH-BFCl68VJOXNGm8jflrMFDEnUuWvoyONZ1NK_jfm7GpoHjK4X2-3zweIWeMXjGm1DXNhcy4YgCMgdCg9siAiTxPgUu2TwabeboBR-Q4hCWlVHClD8kRl1RmmYIBmUxqs6j8Imlc8my8bdF0lU1ue9uZVTIq0TfWtLbyTW1ukpFPZuvSdJg0PnlBi76L5j3mMJyQA2dWAU9375DM7u9ex4_p9OlhMh5NUyu46NK4eCkVOIG6BDTSUpRMutxq7Up0gNpBNqclCoOKA6fCoQSATDM3nwvkQ3K57V23zVuPoSvqKlhcrYzHpg8FKEa1AqAq0otfdNn0rY_bRaUlBSZ5HhXbKts2IbToinVb1ab9KBgtNncu_tw5Zs53zf28xvI78XXYCK62IJgF_nz7f-MnieiDKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2796021638</pqid></control><display><type>article</type><title>Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances</title><source>Access via SAGE</source><source>MEDLINE</source><creator>Barat, Maxime ; Marchese, Ugo ; Pellat, Anna ; Dohan, Anthony ; Coriat, Romain ; Hoeffel, Christine ; Fishman, Elliot K. ; Cassinotto, Christophe ; Chu, Linda ; Soyer, Philippe</creator><creatorcontrib>Barat, Maxime ; Marchese, Ugo ; Pellat, Anna ; Dohan, Anthony ; Coriat, Romain ; Hoeffel, Christine ; Fishman, Elliot K. ; Cassinotto, Christophe ; Chu, Linda ; Soyer, Philippe</creatorcontrib><description>Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.</description><identifier>ISSN: 0846-5371</identifier><identifier>EISSN: 1488-2361</identifier><identifier>DOI: 10.1177/08465371221124927</identifier><identifier>PMID: 36065572</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Adenocarcinoma ; Artificial Intelligence ; Cancer ; Carcinoma, Pancreatic Ductal ; Computed tomography ; Data acquisition ; Humans ; Image acquisition ; Lesions ; Magnetic resonance imaging ; Medical imaging ; Pancreas ; Pancreatic cancer ; Pancreatic carcinoma ; Pancreatic Neoplasms ; Pancreatic Neoplasms - pathology ; Radiomics ; Tomography, X-Ray Computed - methods ; Tumors</subject><ispartof>Canadian Association of Radiologists Journal, 2023-05, Vol.74 (2), p.351-361</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-117d672f4e9d2ea6c0e616f8c99fdef2e9f25b0de4ae732304fe6222591fbb4e3</citedby><cites>FETCH-LOGICAL-c434t-117d672f4e9d2ea6c0e616f8c99fdef2e9f25b0de4ae732304fe6222591fbb4e3</cites><orcidid>0000-0002-5055-1682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/08465371221124927$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/08465371221124927$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,315,781,785,793,21823,27926,27928,27929,43625,43626</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36065572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barat, Maxime</creatorcontrib><creatorcontrib>Marchese, Ugo</creatorcontrib><creatorcontrib>Pellat, Anna</creatorcontrib><creatorcontrib>Dohan, Anthony</creatorcontrib><creatorcontrib>Coriat, Romain</creatorcontrib><creatorcontrib>Hoeffel, Christine</creatorcontrib><creatorcontrib>Fishman, Elliot K.</creatorcontrib><creatorcontrib>Cassinotto, Christophe</creatorcontrib><creatorcontrib>Chu, Linda</creatorcontrib><creatorcontrib>Soyer, Philippe</creatorcontrib><title>Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances</title><title>Canadian Association of Radiologists Journal</title><addtitle>Can Assoc Radiol J</addtitle><description>Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.</description><subject>Adenocarcinoma</subject><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Carcinoma, Pancreatic Ductal</subject><subject>Computed tomography</subject><subject>Data acquisition</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Pancreas</subject><subject>Pancreatic cancer</subject><subject>Pancreatic carcinoma</subject><subject>Pancreatic Neoplasms</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Radiomics</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tumors</subject><issn>0846-5371</issn><issn>1488-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M9LwzAUB_Agis7pH-BFCl68VJOXNGm8jflrMFDEnUuWvoyONZ1NK_jfm7GpoHjK4X2-3zweIWeMXjGm1DXNhcy4YgCMgdCg9siAiTxPgUu2TwabeboBR-Q4hCWlVHClD8kRl1RmmYIBmUxqs6j8Imlc8my8bdF0lU1ue9uZVTIq0TfWtLbyTW1ukpFPZuvSdJg0PnlBi76L5j3mMJyQA2dWAU9375DM7u9ex4_p9OlhMh5NUyu46NK4eCkVOIG6BDTSUpRMutxq7Up0gNpBNqclCoOKA6fCoQSATDM3nwvkQ3K57V23zVuPoSvqKlhcrYzHpg8FKEa1AqAq0otfdNn0rY_bRaUlBSZ5HhXbKts2IbToinVb1ab9KBgtNncu_tw5Zs53zf28xvI78XXYCK62IJgF_nz7f-MnieiDKQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Barat, Maxime</creator><creator>Marchese, Ugo</creator><creator>Pellat, Anna</creator><creator>Dohan, Anthony</creator><creator>Coriat, Romain</creator><creator>Hoeffel, Christine</creator><creator>Fishman, Elliot K.</creator><creator>Cassinotto, Christophe</creator><creator>Chu, Linda</creator><creator>Soyer, Philippe</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5055-1682</orcidid></search><sort><creationdate>20230501</creationdate><title>Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances</title><author>Barat, Maxime ; Marchese, Ugo ; Pellat, Anna ; Dohan, Anthony ; Coriat, Romain ; Hoeffel, Christine ; Fishman, Elliot K. ; Cassinotto, Christophe ; Chu, Linda ; Soyer, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-117d672f4e9d2ea6c0e616f8c99fdef2e9f25b0de4ae732304fe6222591fbb4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma</topic><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Carcinoma, Pancreatic Ductal</topic><topic>Computed tomography</topic><topic>Data acquisition</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Pancreas</topic><topic>Pancreatic cancer</topic><topic>Pancreatic carcinoma</topic><topic>Pancreatic Neoplasms</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Radiomics</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barat, Maxime</creatorcontrib><creatorcontrib>Marchese, Ugo</creatorcontrib><creatorcontrib>Pellat, Anna</creatorcontrib><creatorcontrib>Dohan, Anthony</creatorcontrib><creatorcontrib>Coriat, Romain</creatorcontrib><creatorcontrib>Hoeffel, Christine</creatorcontrib><creatorcontrib>Fishman, Elliot K.</creatorcontrib><creatorcontrib>Cassinotto, Christophe</creatorcontrib><creatorcontrib>Chu, Linda</creatorcontrib><creatorcontrib>Soyer, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Canadian Association of Radiologists Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barat, Maxime</au><au>Marchese, Ugo</au><au>Pellat, Anna</au><au>Dohan, Anthony</au><au>Coriat, Romain</au><au>Hoeffel, Christine</au><au>Fishman, Elliot K.</au><au>Cassinotto, Christophe</au><au>Chu, Linda</au><au>Soyer, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances</atitle><jtitle>Canadian Association of Radiologists Journal</jtitle><addtitle>Can Assoc Radiol J</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>74</volume><issue>2</issue><spage>351</spage><epage>361</epage><pages>351-361</pages><issn>0846-5371</issn><eissn>1488-2361</eissn><abstract>Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>36065572</pmid><doi>10.1177/08465371221124927</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5055-1682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0846-5371
ispartof Canadian Association of Radiologists Journal, 2023-05, Vol.74 (2), p.351-361
issn 0846-5371
1488-2361
language eng
recordid cdi_proquest_miscellaneous_2710972207
source Access via SAGE; MEDLINE
subjects Adenocarcinoma
Artificial Intelligence
Cancer
Carcinoma, Pancreatic Ductal
Computed tomography
Data acquisition
Humans
Image acquisition
Lesions
Magnetic resonance imaging
Medical imaging
Pancreas
Pancreatic cancer
Pancreatic carcinoma
Pancreatic Neoplasms
Pancreatic Neoplasms - pathology
Radiomics
Tomography, X-Ray Computed - methods
Tumors
title Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20Pancreatic%20Ductal%20Adenocarcinoma:%20An%20Update%20on%20Recent%20Advances&rft.jtitle=Canadian%20Association%20of%20Radiologists%20Journal&rft.au=Barat,%20Maxime&rft.date=2023-05-01&rft.volume=74&rft.issue=2&rft.spage=351&rft.epage=361&rft.pages=351-361&rft.issn=0846-5371&rft.eissn=1488-2361&rft_id=info:doi/10.1177/08465371221124927&rft_dat=%3Cproquest_cross%3E2710972207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2796021638&rft_id=info:pmid/36065572&rft_sage_id=10.1177_08465371221124927&rfr_iscdi=true