Scaling laws for elastoplastic fracture
Scale or size effects in fracture result from the interaction of some energies dependent upon volume and other energies dependent on area (cube-square scaling). The known scaling laws within the lefm and nlefm ranges and within the rigid-plastic range are highlighted along with applications. This pa...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 1999, Vol.95 (1-4), p.51-65 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 1-4 |
container_start_page | 51 |
container_title | International journal of fracture |
container_volume | 95 |
creator | ATKINS, A. G |
description | Scale or size effects in fracture result from the interaction of some energies dependent upon volume and other energies dependent on area (cube-square scaling). The known scaling laws within the lefm and nlefm ranges and within the rigid-plastic range are highlighted along with applications. This paper derives for the first time the scaling laws for elastoplastic fracture based on linear power-law behaviour which span the different regimes from lefm at one end of the spectrum to extensive ductile fracture at the other. The existence of a master-curve of normalised load X vs normalised displacement ū is demonstrated on which fall all results from different size geometrically-similar testpieces up to first cracking. Crack propagation in larger bodies begins at smaller normalised loads and displacements than geometrically-similar small bodies. Large bodies behave as if their fracture toughness were given by (R/λ), where λ(>1) is the scaling factor, rather than by the material value R. Propagation behaviour is path-dependent and each size cracked body has its own X-ū propagation plot. This explains departures from ‘geometric’ (λ3) scaling well-known in the literature. Comparison is made with old and recent experimental results. |
doi_str_mv | 10.1023/A:1018683830486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27103879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27103879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-629d7da71a764c27207bdb11e3ba864df4be3e518dedf26e28074f5e1b886b833</originalsourceid><addsrcrecordid>eNpdkM1LxDAUxIMoWFfPXguKnqp5eWny4m1Z_IIFD-q5JGkqXbrtmrSI_70V9-Rl5vJjmBnGzoHfABd4u7wDDqQICbkkdcAyKDUWQmk8ZBlHrQojhTlmJyltOOdGk8zY9au3Xdt_5J39SnkzxDx0No3D7ldbnzfR-nGK4ZQdNbZL4WzvC_b-cP-2eirWL4_Pq-W68CjKsVDC1Lq2GqxW0gstuHa1AwjoLClZN9IFDCVQHepGqCCIa9mUARyRcoS4YFd_ubs4fE4hjdW2TT50ne3DMKVKaOBI2szgxT9wM0yxn7tVQpSGJChQM3W5p2yah85ret-mahfbrY3fFRgzn8TxB5erW_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259841616</pqid></control><display><type>article</type><title>Scaling laws for elastoplastic fracture</title><source>Springer Nature - Complete Springer Journals</source><creator>ATKINS, A. G</creator><creatorcontrib>ATKINS, A. G</creatorcontrib><description>Scale or size effects in fracture result from the interaction of some energies dependent upon volume and other energies dependent on area (cube-square scaling). The known scaling laws within the lefm and nlefm ranges and within the rigid-plastic range are highlighted along with applications. This paper derives for the first time the scaling laws for elastoplastic fracture based on linear power-law behaviour which span the different regimes from lefm at one end of the spectrum to extensive ductile fracture at the other. The existence of a master-curve of normalised load X vs normalised displacement ū is demonstrated on which fall all results from different size geometrically-similar testpieces up to first cracking. Crack propagation in larger bodies begins at smaller normalised loads and displacements than geometrically-similar small bodies. Large bodies behave as if their fracture toughness were given by (R/λ), where λ(>1) is the scaling factor, rather than by the material value R. Propagation behaviour is path-dependent and each size cracked body has its own X-ū propagation plot. This explains departures from ‘geometric’ (λ3) scaling well-known in the literature. Comparison is made with old and recent experimental results.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1023/A:1018683830486</identifier><identifier>CODEN: IJFRAP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Crack propagation ; Ductile fracture ; Elastoplasticity ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fracture toughness ; Fundamental areas of phenomenology (including applications) ; Physics ; Propagation ; Scaling factors ; Scaling laws ; Size effects ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal of fracture, 1999, Vol.95 (1-4), p.51-65</ispartof><rights>1999 INIST-CNRS</rights><rights>International Journal of Fracture is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-629d7da71a764c27207bdb11e3ba864df4be3e518dedf26e28074f5e1b886b833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,4036,4037,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1991570$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ATKINS, A. G</creatorcontrib><title>Scaling laws for elastoplastic fracture</title><title>International journal of fracture</title><description>Scale or size effects in fracture result from the interaction of some energies dependent upon volume and other energies dependent on area (cube-square scaling). The known scaling laws within the lefm and nlefm ranges and within the rigid-plastic range are highlighted along with applications. This paper derives for the first time the scaling laws for elastoplastic fracture based on linear power-law behaviour which span the different regimes from lefm at one end of the spectrum to extensive ductile fracture at the other. The existence of a master-curve of normalised load X vs normalised displacement ū is demonstrated on which fall all results from different size geometrically-similar testpieces up to first cracking. Crack propagation in larger bodies begins at smaller normalised loads and displacements than geometrically-similar small bodies. Large bodies behave as if their fracture toughness were given by (R/λ), where λ(>1) is the scaling factor, rather than by the material value R. Propagation behaviour is path-dependent and each size cracked body has its own X-ū propagation plot. This explains departures from ‘geometric’ (λ3) scaling well-known in the literature. Comparison is made with old and recent experimental results.</description><subject>Crack propagation</subject><subject>Ductile fracture</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fracture toughness</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Propagation</subject><subject>Scaling factors</subject><subject>Scaling laws</subject><subject>Size effects</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkM1LxDAUxIMoWFfPXguKnqp5eWny4m1Z_IIFD-q5JGkqXbrtmrSI_70V9-Rl5vJjmBnGzoHfABd4u7wDDqQICbkkdcAyKDUWQmk8ZBlHrQojhTlmJyltOOdGk8zY9au3Xdt_5J39SnkzxDx0No3D7ldbnzfR-nGK4ZQdNbZL4WzvC_b-cP-2eirWL4_Pq-W68CjKsVDC1Lq2GqxW0gstuHa1AwjoLClZN9IFDCVQHepGqCCIa9mUARyRcoS4YFd_ubs4fE4hjdW2TT50ne3DMKVKaOBI2szgxT9wM0yxn7tVQpSGJChQM3W5p2yah85ret-mahfbrY3fFRgzn8TxB5erW_8</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>ATKINS, A. G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>1999</creationdate><title>Scaling laws for elastoplastic fracture</title><author>ATKINS, A. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-629d7da71a764c27207bdb11e3ba864df4be3e518dedf26e28074f5e1b886b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Crack propagation</topic><topic>Ductile fracture</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fracture toughness</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Propagation</topic><topic>Scaling factors</topic><topic>Scaling laws</topic><topic>Size effects</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ATKINS, A. G</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ATKINS, A. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling laws for elastoplastic fracture</atitle><jtitle>International journal of fracture</jtitle><date>1999</date><risdate>1999</risdate><volume>95</volume><issue>1-4</issue><spage>51</spage><epage>65</epage><pages>51-65</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><coden>IJFRAP</coden><abstract>Scale or size effects in fracture result from the interaction of some energies dependent upon volume and other energies dependent on area (cube-square scaling). The known scaling laws within the lefm and nlefm ranges and within the rigid-plastic range are highlighted along with applications. This paper derives for the first time the scaling laws for elastoplastic fracture based on linear power-law behaviour which span the different regimes from lefm at one end of the spectrum to extensive ductile fracture at the other. The existence of a master-curve of normalised load X vs normalised displacement ū is demonstrated on which fall all results from different size geometrically-similar testpieces up to first cracking. Crack propagation in larger bodies begins at smaller normalised loads and displacements than geometrically-similar small bodies. Large bodies behave as if their fracture toughness were given by (R/λ), where λ(>1) is the scaling factor, rather than by the material value R. Propagation behaviour is path-dependent and each size cracked body has its own X-ū propagation plot. This explains departures from ‘geometric’ (λ3) scaling well-known in the literature. Comparison is made with old and recent experimental results.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1018683830486</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 1999, Vol.95 (1-4), p.51-65 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_miscellaneous_27103879 |
source | Springer Nature - Complete Springer Journals |
subjects | Crack propagation Ductile fracture Elastoplasticity Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fracture toughness Fundamental areas of phenomenology (including applications) Physics Propagation Scaling factors Scaling laws Size effects Solid mechanics Structural and continuum mechanics |
title | Scaling laws for elastoplastic fracture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20laws%20for%20elastoplastic%20fracture&rft.jtitle=International%20journal%20of%20fracture&rft.au=ATKINS,%20A.%20G&rft.date=1999&rft.volume=95&rft.issue=1-4&rft.spage=51&rft.epage=65&rft.pages=51-65&rft.issn=0376-9429&rft.eissn=1573-2673&rft.coden=IJFRAP&rft_id=info:doi/10.1023/A:1018683830486&rft_dat=%3Cproquest_pasca%3E27103879%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259841616&rft_id=info:pmid/&rfr_iscdi=true |