Recent developments in the design and fabrication of visible photonic band gap waveguide devices
In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to s...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 1999-07, Vol.10 (5-6), p.429-440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 5-6 |
container_start_page | 429 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 10 |
creator | Charlton, M D B Parker, G J Zoorob, M E |
description | In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1008970112219 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27100414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27100414</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-ef4d9629d61ef51837e66b7e55ede1948353ca9028e71f094b7b76fcfa025ca53</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVs9fFg3iJ7ux3vJXiFxQEUfBWN5tJuyXdxG4S_74pevLgaYbhmYF5CTkHdg2Mi5vZLTBmc8MAOIf8gExAGZFJy98PyYTlymRScX5MTlLaMMa0FHZCPl7QY-xoiQPWTbsd-0RDpN0ax1kKq0hdLGnlil3wrgtNpE1Fh5BCUSNt103XxOBpsUcr19IvN-CqD-V-ewge0yk5qlyd8Oy3Tsnb_d3r_DFbPD88zWeLrOVSdhlWssw1z0sNWCmwwqDWhUGlsETIpRVKeJczbtFAxXJZmMLoyleOceWdElNy-XO33TWfPaZuuQ3JY127iE2fltyM8UiQI7z6F4I2wI0AYCO9-EM3Tb-L4xtLa0ErOwYsvgGcenID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881658573</pqid></control><display><type>article</type><title>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Charlton, M D; B ; Parker, G J ; Zoorob, M E</creator><creatorcontrib>Charlton, M D; B ; Parker, G J ; Zoorob, M E</creatorcontrib><description>In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1023/A:1008970112219</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Design engineering ; Devices ; Dielectric waveguides ; Electronics ; Lattice vibration ; Photonic crystals ; Photonics ; Waveguides</subject><ispartof>Journal of materials science. Materials in electronics, 1999-07, Vol.10 (5-6), p.429-440</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Charlton, M D; B</creatorcontrib><creatorcontrib>Parker, G J</creatorcontrib><creatorcontrib>Zoorob, M E</creatorcontrib><title>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</title><title>Journal of materials science. Materials in electronics</title><description>In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]</description><subject>Design engineering</subject><subject>Devices</subject><subject>Dielectric waveguides</subject><subject>Electronics</subject><subject>Lattice vibration</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Waveguides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVs9fFg3iJ7ux3vJXiFxQEUfBWN5tJuyXdxG4S_74pevLgaYbhmYF5CTkHdg2Mi5vZLTBmc8MAOIf8gExAGZFJy98PyYTlymRScX5MTlLaMMa0FHZCPl7QY-xoiQPWTbsd-0RDpN0ax1kKq0hdLGnlil3wrgtNpE1Fh5BCUSNt103XxOBpsUcr19IvN-CqD-V-ewge0yk5qlyd8Oy3Tsnb_d3r_DFbPD88zWeLrOVSdhlWssw1z0sNWCmwwqDWhUGlsETIpRVKeJczbtFAxXJZmMLoyleOceWdElNy-XO33TWfPaZuuQ3JY127iE2fltyM8UiQI7z6F4I2wI0AYCO9-EM3Tb-L4xtLa0ErOwYsvgGcenID</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Charlton, M D; B</creator><creator>Parker, G J</creator><creator>Zoorob, M E</creator><general>Springer Nature B.V</general><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>H8D</scope></search><sort><creationdate>19990701</creationdate><title>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</title><author>Charlton, M D; B ; Parker, G J ; Zoorob, M E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-ef4d9629d61ef51837e66b7e55ede1948353ca9028e71f094b7b76fcfa025ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Design engineering</topic><topic>Devices</topic><topic>Dielectric waveguides</topic><topic>Electronics</topic><topic>Lattice vibration</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlton, M D; B</creatorcontrib><creatorcontrib>Parker, G J</creatorcontrib><creatorcontrib>Zoorob, M E</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Aerospace Database</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlton, M D; B</au><au>Parker, G J</au><au>Zoorob, M E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>10</volume><issue>5-6</issue><spage>429</spage><epage>440</epage><pages>429-440</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008970112219</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 1999-07, Vol.10 (5-6), p.429-440 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_miscellaneous_27100414 |
source | SpringerLink Journals - AutoHoldings |
subjects | Design engineering Devices Dielectric waveguides Electronics Lattice vibration Photonic crystals Photonics Waveguides |
title | Recent developments in the design and fabrication of visible photonic band gap waveguide devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20in%20the%20design%20and%20fabrication%20of%20visible%20photonic%20band%20gap%20waveguide%20devices&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Charlton,%20M%20D;%20B&rft.date=1999-07-01&rft.volume=10&rft.issue=5-6&rft.spage=429&rft.epage=440&rft.pages=429-440&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1023/A:1008970112219&rft_dat=%3Cproquest%3E27100414%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881658573&rft_id=info:pmid/&rfr_iscdi=true |