Recent developments in the design and fabrication of visible photonic band gap waveguide devices

In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 1999-07, Vol.10 (5-6), p.429-440
Hauptverfasser: Charlton, M D, B, Parker, G J, Zoorob, M E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 5-6
container_start_page 429
container_title Journal of materials science. Materials in electronics
container_volume 10
creator Charlton, M D
B
Parker, G J
Zoorob, M E
description In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1008970112219
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27100414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27100414</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-ef4d9629d61ef51837e66b7e55ede1948353ca9028e71f094b7b76fcfa025ca53</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVs9fFg3iJ7ux3vJXiFxQEUfBWN5tJuyXdxG4S_74pevLgaYbhmYF5CTkHdg2Mi5vZLTBmc8MAOIf8gExAGZFJy98PyYTlymRScX5MTlLaMMa0FHZCPl7QY-xoiQPWTbsd-0RDpN0ax1kKq0hdLGnlil3wrgtNpE1Fh5BCUSNt103XxOBpsUcr19IvN-CqD-V-ewge0yk5qlyd8Oy3Tsnb_d3r_DFbPD88zWeLrOVSdhlWssw1z0sNWCmwwqDWhUGlsETIpRVKeJczbtFAxXJZmMLoyleOceWdElNy-XO33TWfPaZuuQ3JY127iE2fltyM8UiQI7z6F4I2wI0AYCO9-EM3Tb-L4xtLa0ErOwYsvgGcenID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881658573</pqid></control><display><type>article</type><title>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Charlton, M D; B ; Parker, G J ; Zoorob, M E</creator><creatorcontrib>Charlton, M D; B ; Parker, G J ; Zoorob, M E</creatorcontrib><description>In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1023/A:1008970112219</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Design engineering ; Devices ; Dielectric waveguides ; Electronics ; Lattice vibration ; Photonic crystals ; Photonics ; Waveguides</subject><ispartof>Journal of materials science. Materials in electronics, 1999-07, Vol.10 (5-6), p.429-440</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Charlton, M D; B</creatorcontrib><creatorcontrib>Parker, G J</creatorcontrib><creatorcontrib>Zoorob, M E</creatorcontrib><title>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</title><title>Journal of materials science. Materials in electronics</title><description>In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]</description><subject>Design engineering</subject><subject>Devices</subject><subject>Dielectric waveguides</subject><subject>Electronics</subject><subject>Lattice vibration</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Waveguides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVs9fFg3iJ7ux3vJXiFxQEUfBWN5tJuyXdxG4S_74pevLgaYbhmYF5CTkHdg2Mi5vZLTBmc8MAOIf8gExAGZFJy98PyYTlymRScX5MTlLaMMa0FHZCPl7QY-xoiQPWTbsd-0RDpN0ax1kKq0hdLGnlil3wrgtNpE1Fh5BCUSNt103XxOBpsUcr19IvN-CqD-V-ewge0yk5qlyd8Oy3Tsnb_d3r_DFbPD88zWeLrOVSdhlWssw1z0sNWCmwwqDWhUGlsETIpRVKeJczbtFAxXJZmMLoyleOceWdElNy-XO33TWfPaZuuQ3JY127iE2fltyM8UiQI7z6F4I2wI0AYCO9-EM3Tb-L4xtLa0ErOwYsvgGcenID</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Charlton, M D; B</creator><creator>Parker, G J</creator><creator>Zoorob, M E</creator><general>Springer Nature B.V</general><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>H8D</scope></search><sort><creationdate>19990701</creationdate><title>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</title><author>Charlton, M D; B ; Parker, G J ; Zoorob, M E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-ef4d9629d61ef51837e66b7e55ede1948353ca9028e71f094b7b76fcfa025ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Design engineering</topic><topic>Devices</topic><topic>Dielectric waveguides</topic><topic>Electronics</topic><topic>Lattice vibration</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlton, M D; B</creatorcontrib><creatorcontrib>Parker, G J</creatorcontrib><creatorcontrib>Zoorob, M E</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Aerospace Database</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlton, M D; B</au><au>Parker, G J</au><au>Zoorob, M E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments in the design and fabrication of visible photonic band gap waveguide devices</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>10</volume><issue>5-6</issue><spage>429</spage><epage>440</epage><pages>429-440</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this paper, we present the design, fabrication and initial optical testing of dielectric waveguide devices which incorporate photonic crystals with photonic band gaps (PBG) in the visible region of the spectrum. In the design of our devices we use a full three-dimensional plane wave analysis to solve the photonic band structure simultaneously with the dielectric waveguide boundary conditions for a fixed lattice and waveguide geometry. This takes into account the finite thickness of the waveguide core, and the evanescent wave in the dielectric cladding layers. Furthermore, we explain how the effective Bloch mode index can be extracted from the results. This enables us to tackle important problems associated with mode coupling between the input waveguide and guided Bloch modes within the porous PBG region, such as Fresnel reflections at the interface and up-scattering from the holes. Finally, we present the recent fabrication of quasi-periodic photonic crystals and PBG waveguide bends.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008970112219</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 1999-07, Vol.10 (5-6), p.429-440
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_27100414
source SpringerLink Journals - AutoHoldings
subjects Design engineering
Devices
Dielectric waveguides
Electronics
Lattice vibration
Photonic crystals
Photonics
Waveguides
title Recent developments in the design and fabrication of visible photonic band gap waveguide devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20in%20the%20design%20and%20fabrication%20of%20visible%20photonic%20band%20gap%20waveguide%20devices&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Charlton,%20M%20D;%20B&rft.date=1999-07-01&rft.volume=10&rft.issue=5-6&rft.spage=429&rft.epage=440&rft.pages=429-440&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1023/A:1008970112219&rft_dat=%3Cproquest%3E27100414%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881658573&rft_id=info:pmid/&rfr_iscdi=true