Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-11, Vol.298 (11), p.102438-102438, Article 102438
Hauptverfasser: Pesquera, Marta, Martinez, Jacobo, Maillot, Benoît, Wang, Kai, Hofmann, Manuel, Raia, Pierre, Loubéry, Sylvain, Steensma, Priscille, Hothorn, Michael, Fitzpatrick, Teresa B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102438
container_issue 11
container_start_page 102438
container_title The Journal of biological chemistry
container_volume 298
creator Pesquera, Marta
Martinez, Jacobo
Maillot, Benoît
Wang, Kai
Hofmann, Manuel
Raia, Pierre
Loubéry, Sylvain
Steensma, Priscille
Hothorn, Michael
Fitzpatrick, Teresa B.
description Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.
doi_str_mv 10.1016/j.jbc.2022.102438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2709741805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582200881X</els_id><sourcerecordid>2709741805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-19a31de29fce033cf9966b0a37fa34ae8e6375fafa6ec775df81a514ebab107d3</originalsourceid><addsrcrecordid>eNp9kE1rFTEYhYMo9rb6A9xIlm7mmo_5xFUpVQsFFyq4C-8kb7i5ZJIxyRTqyp9uyr26NJvkwDkP5CHkDWd7znj__rg_znovmBA1i1aOz8iOs1E2suM_npMdY4I3k-jGC3KZ85HV0078JbmQfX10gu_I768lbbpsCTyFYKjdgi4uhhpz2YzDTKOl1wlmZ-KaXablAN5BAFqSWw8xrwcoSMsWAnq6YAHvI4Zfj0udJnzASkrR12BjomCMO-NNXMCF_Iq8sOAzvj7fV-T7x9tvN5-b-y-f7m6u7xst27E0fALJDYrJamRSajtNfT8zkIMF2QKO2Muhs2ChRz0MnbEjh463OMPM2WDkFXl34q4p_twwF7W4rNF7CBi3rMTApqHlI-tqlZ-qOsWcE1q1JrdAelScqSfx6qiqePUkXp3E183bM36bFzT_Fn9N18KHUwHrJx8cJpW1w6DRuIS6KBPdf_B_AJaSl6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709741805</pqid></control><display><type>article</type><title>Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pesquera, Marta ; Martinez, Jacobo ; Maillot, Benoît ; Wang, Kai ; Hofmann, Manuel ; Raia, Pierre ; Loubéry, Sylvain ; Steensma, Priscille ; Hothorn, Michael ; Fitzpatrick, Teresa B.</creator><creatorcontrib>Pesquera, Marta ; Martinez, Jacobo ; Maillot, Benoît ; Wang, Kai ; Hofmann, Manuel ; Raia, Pierre ; Loubéry, Sylvain ; Steensma, Priscille ; Hothorn, Michael ; Fitzpatrick, Teresa B.</creatorcontrib><description>Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102438</identifier><identifier>PMID: 36049521</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acid Anhydride Hydrolases - metabolism ; Animals ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; development ; Metalloproteins - chemistry ; mitochondria ; Polyphosphates ; triphosphate tunnel metalloenzyme ; uridine/cytidine kinase ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2022-11, Vol.298 (11), p.102438-102438, Article 102438</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-19a31de29fce033cf9966b0a37fa34ae8e6375fafa6ec775df81a514ebab107d3</cites><orcidid>0000-0003-3469-1922 ; 0000-0002-3628-2228 ; 0000-0001-7061-9456 ; 0000-0001-8592-0970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36049521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pesquera, Marta</creatorcontrib><creatorcontrib>Martinez, Jacobo</creatorcontrib><creatorcontrib>Maillot, Benoît</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hofmann, Manuel</creatorcontrib><creatorcontrib>Raia, Pierre</creatorcontrib><creatorcontrib>Loubéry, Sylvain</creatorcontrib><creatorcontrib>Steensma, Priscille</creatorcontrib><creatorcontrib>Hothorn, Michael</creatorcontrib><creatorcontrib>Fitzpatrick, Teresa B.</creatorcontrib><title>Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.</description><subject>Acid Anhydride Hydrolases - metabolism</subject><subject>Animals</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>development</subject><subject>Metalloproteins - chemistry</subject><subject>mitochondria</subject><subject>Polyphosphates</subject><subject>triphosphate tunnel metalloenzyme</subject><subject>uridine/cytidine kinase</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1rFTEYhYMo9rb6A9xIlm7mmo_5xFUpVQsFFyq4C-8kb7i5ZJIxyRTqyp9uyr26NJvkwDkP5CHkDWd7znj__rg_znovmBA1i1aOz8iOs1E2suM_npMdY4I3k-jGC3KZ85HV0078JbmQfX10gu_I768lbbpsCTyFYKjdgi4uhhpz2YzDTKOl1wlmZ-KaXablAN5BAFqSWw8xrwcoSMsWAnq6YAHvI4Zfj0udJnzASkrR12BjomCMO-NNXMCF_Iq8sOAzvj7fV-T7x9tvN5-b-y-f7m6u7xst27E0fALJDYrJamRSajtNfT8zkIMF2QKO2Muhs2ChRz0MnbEjh463OMPM2WDkFXl34q4p_twwF7W4rNF7CBi3rMTApqHlI-tqlZ-qOsWcE1q1JrdAelScqSfx6qiqePUkXp3E183bM36bFzT_Fn9N18KHUwHrJx8cJpW1w6DRuIS6KBPdf_B_AJaSl6E</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Pesquera, Marta</creator><creator>Martinez, Jacobo</creator><creator>Maillot, Benoît</creator><creator>Wang, Kai</creator><creator>Hofmann, Manuel</creator><creator>Raia, Pierre</creator><creator>Loubéry, Sylvain</creator><creator>Steensma, Priscille</creator><creator>Hothorn, Michael</creator><creator>Fitzpatrick, Teresa B.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3469-1922</orcidid><orcidid>https://orcid.org/0000-0002-3628-2228</orcidid><orcidid>https://orcid.org/0000-0001-7061-9456</orcidid><orcidid>https://orcid.org/0000-0001-8592-0970</orcidid></search><sort><creationdate>202211</creationdate><title>Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains</title><author>Pesquera, Marta ; Martinez, Jacobo ; Maillot, Benoît ; Wang, Kai ; Hofmann, Manuel ; Raia, Pierre ; Loubéry, Sylvain ; Steensma, Priscille ; Hothorn, Michael ; Fitzpatrick, Teresa B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-19a31de29fce033cf9966b0a37fa34ae8e6375fafa6ec775df81a514ebab107d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid Anhydride Hydrolases - metabolism</topic><topic>Animals</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>development</topic><topic>Metalloproteins - chemistry</topic><topic>mitochondria</topic><topic>Polyphosphates</topic><topic>triphosphate tunnel metalloenzyme</topic><topic>uridine/cytidine kinase</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesquera, Marta</creatorcontrib><creatorcontrib>Martinez, Jacobo</creatorcontrib><creatorcontrib>Maillot, Benoît</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hofmann, Manuel</creatorcontrib><creatorcontrib>Raia, Pierre</creatorcontrib><creatorcontrib>Loubéry, Sylvain</creatorcontrib><creatorcontrib>Steensma, Priscille</creatorcontrib><creatorcontrib>Hothorn, Michael</creatorcontrib><creatorcontrib>Fitzpatrick, Teresa B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesquera, Marta</au><au>Martinez, Jacobo</au><au>Maillot, Benoît</au><au>Wang, Kai</au><au>Hofmann, Manuel</au><au>Raia, Pierre</au><au>Loubéry, Sylvain</au><au>Steensma, Priscille</au><au>Hothorn, Michael</au><au>Fitzpatrick, Teresa B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-11</date><risdate>2022</risdate><volume>298</volume><issue>11</issue><spage>102438</spage><epage>102438</epage><pages>102438-102438</pages><artnum>102438</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36049521</pmid><doi>10.1016/j.jbc.2022.102438</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3469-1922</orcidid><orcidid>https://orcid.org/0000-0002-3628-2228</orcidid><orcidid>https://orcid.org/0000-0001-7061-9456</orcidid><orcidid>https://orcid.org/0000-0001-8592-0970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2022-11, Vol.298 (11), p.102438-102438, Article 102438
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_2709741805
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acid Anhydride Hydrolases - metabolism
Animals
Arabidopsis
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
development
Metalloproteins - chemistry
mitochondria
Polyphosphates
triphosphate tunnel metalloenzyme
uridine/cytidine kinase
X-ray crystallography
title Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20studies%20of%20Arabidopsis%20thaliana%20triphosphate%20tunnel%20metalloenzymes%20reveal%20roles%20for%20additional%20domains&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Pesquera,%20Marta&rft.date=2022-11&rft.volume=298&rft.issue=11&rft.spage=102438&rft.epage=102438&rft.pages=102438-102438&rft.artnum=102438&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102438&rft_dat=%3Cproquest_cross%3E2709741805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709741805&rft_id=info:pmid/36049521&rft_els_id=S002192582200881X&rfr_iscdi=true