Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice

10-Hydroxy-2-decenoic acid (10-HDA) is a principal active ingredients of royal jelly. Several recent studies demonstrated that 10-HDA has potential anti-type 2 diabetes mellitus (T2DM) properties. To evaluate the anti-T2DM effect of 10-HDA and explore its underlying molecular mechanisms, we used hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2022-10, Vol.13 (19), p.9931-9946
Hauptverfasser: Hu, Xiyi, Liu, Zhenguo, Lu, Yuntao, Chi, Xuepeng, Han, Kai, Wang, Hongfang, Wang, Ying, Ma, Lanting, Xu, Baohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9946
container_issue 19
container_start_page 9931
container_title Food & function
container_volume 13
creator Hu, Xiyi
Liu, Zhenguo
Lu, Yuntao
Chi, Xuepeng
Han, Kai
Wang, Hongfang
Wang, Ying
Ma, Lanting
Xu, Baohua
description 10-Hydroxy-2-decenoic acid (10-HDA) is a principal active ingredients of royal jelly. Several recent studies demonstrated that 10-HDA has potential anti-type 2 diabetes mellitus (T2DM) properties. To evaluate the anti-T2DM effect of 10-HDA and explore its underlying molecular mechanisms, we used high fat diet (HFD) combined with streptozotocin (STZ) injection to establish a diabetes model. Mice were randomly divided into four groups (8 mice per group): control group, 10-HDA group, T2DM group, and T2DM + 10-HDA group. The 10-HDA and T2DM + 10-HDA groups were administered intragastric 10-HDA (100 mg per kg body weight), while the control and T2DM groups were administered a vehicle, daily for 4 weeks. Our analysis indicated that there was no significant difference in body weight between T2DM + 10-HDA and control group mice ( P > 0.05). Treatment with 10-HDA reduced fasting blood glucose and increased insulin levels in diabetic mice ( P < 0.05), as well as increasing the area of pancreatic islets ( P < 0.05), and alleviating vacuolar degeneration in the liver. Further, 10-HDA intervention increased superoxide dismutase, catalase, and glutathione peroxidase activities in diabetic mouse liver, alleviated lipid peroxidation, inhibited liver NF-κB nuclear translocation, decreased IL-6 and TNF-α content, and increased P-PI3K, P-AKT, and P-GSK3β protein levels (all P < 0.05). Fifteen potential biomarkers were screened by analysis of liver metabolomics data, of which hexadecanamide, stearamide, pentadecanoic acid, and fatty acid esters of hydroxy fatty acids (16:0/18:1) were highly abundant. In conclusion, 10-HDA has clear hypoglycemic effects on diabetic mice, through the PI3K/AKT/GSK3β signaling pathway.
doi_str_mv 10.1039/d1fo03818d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2709738047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720752693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-54168e3176d538bd0e5d569e154281f86c7c19a3385b8b6240c62d621d1c989f3</originalsourceid><addsrcrecordid>eNpdkc1q3DAUhU1JoSGdTZ5A0E0pqKMfW5aWYfLTkMBkMYXsjCxdjzXYkmvJSZ1nycPW07Sb3M29cD8OnHOy7JyS75Rwtba0CYRLKu2H7JSRnGFRkMeT_3euxKdsFeOBLMOVkkqeZq833WRCBNRD0nXoXOwR-FZ7Az34hOoZUYLb2Y7h94wZtmDAB2eQNs6iJ6dRagE93PK79cXdDkW397pzfo8GndpnPSPnUev2LW50wtZBWsc0wpDCS0jBLE_n7WTAojQPgBiyTteQFv3eGficfWx0F2H1b59lP6-vdpsf-H57c7u5uMeGc55wkVMhgdNS2ILL2hIobCEU0CJnkjZSmNJQpTmXRS1rwXJiBLOCUUvNkkLDz7Kvb7rDGH5NEFPVu2ig67SHMMWKlUSVXJK8XNAv79BDmMbF85FipCyYUHyhvr1RZgwxjtBUw-h6Pc4VJdWxq-qSXm__dnXJ_wCA24ZK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720752693</pqid></control><display><type>article</type><title>Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hu, Xiyi ; Liu, Zhenguo ; Lu, Yuntao ; Chi, Xuepeng ; Han, Kai ; Wang, Hongfang ; Wang, Ying ; Ma, Lanting ; Xu, Baohua</creator><creatorcontrib>Hu, Xiyi ; Liu, Zhenguo ; Lu, Yuntao ; Chi, Xuepeng ; Han, Kai ; Wang, Hongfang ; Wang, Ying ; Ma, Lanting ; Xu, Baohua</creatorcontrib><description>10-Hydroxy-2-decenoic acid (10-HDA) is a principal active ingredients of royal jelly. Several recent studies demonstrated that 10-HDA has potential anti-type 2 diabetes mellitus (T2DM) properties. To evaluate the anti-T2DM effect of 10-HDA and explore its underlying molecular mechanisms, we used high fat diet (HFD) combined with streptozotocin (STZ) injection to establish a diabetes model. Mice were randomly divided into four groups (8 mice per group): control group, 10-HDA group, T2DM group, and T2DM + 10-HDA group. The 10-HDA and T2DM + 10-HDA groups were administered intragastric 10-HDA (100 mg per kg body weight), while the control and T2DM groups were administered a vehicle, daily for 4 weeks. Our analysis indicated that there was no significant difference in body weight between T2DM + 10-HDA and control group mice ( P &gt; 0.05). Treatment with 10-HDA reduced fasting blood glucose and increased insulin levels in diabetic mice ( P &lt; 0.05), as well as increasing the area of pancreatic islets ( P &lt; 0.05), and alleviating vacuolar degeneration in the liver. Further, 10-HDA intervention increased superoxide dismutase, catalase, and glutathione peroxidase activities in diabetic mouse liver, alleviated lipid peroxidation, inhibited liver NF-κB nuclear translocation, decreased IL-6 and TNF-α content, and increased P-PI3K, P-AKT, and P-GSK3β protein levels (all P &lt; 0.05). Fifteen potential biomarkers were screened by analysis of liver metabolomics data, of which hexadecanamide, stearamide, pentadecanoic acid, and fatty acid esters of hydroxy fatty acids (16:0/18:1) were highly abundant. In conclusion, 10-HDA has clear hypoglycemic effects on diabetic mice, through the PI3K/AKT/GSK3β signaling pathway.</description><identifier>ISSN: 2042-6496</identifier><identifier>EISSN: 2042-650X</identifier><identifier>DOI: 10.1039/d1fo03818d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Biomarkers ; Blood glucose ; Body weight ; Catalase ; Degeneration ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diet ; Esters ; Fatty acids ; Glucose ; Glucose metabolism ; Glutathione ; Glutathione peroxidase ; High fat diet ; Insulin ; Interleukin 6 ; Lipid peroxidation ; Lipids ; Liver ; Metabolomics ; Molecular modelling ; NF-κB protein ; Nuclear transport ; Peroxidase ; Peroxidation ; Royal jelly ; Signal transduction ; Signaling ; Streptozocin ; Superoxide dismutase ; Translocation ; Tumor necrosis factor-α</subject><ispartof>Food &amp; function, 2022-10, Vol.13 (19), p.9931-9946</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-54168e3176d538bd0e5d569e154281f86c7c19a3385b8b6240c62d621d1c989f3</citedby><cites>FETCH-LOGICAL-c333t-54168e3176d538bd0e5d569e154281f86c7c19a3385b8b6240c62d621d1c989f3</cites><orcidid>0000-0003-2009-1707 ; 0000-0002-0422-3725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hu, Xiyi</creatorcontrib><creatorcontrib>Liu, Zhenguo</creatorcontrib><creatorcontrib>Lu, Yuntao</creatorcontrib><creatorcontrib>Chi, Xuepeng</creatorcontrib><creatorcontrib>Han, Kai</creatorcontrib><creatorcontrib>Wang, Hongfang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Ma, Lanting</creatorcontrib><creatorcontrib>Xu, Baohua</creatorcontrib><title>Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice</title><title>Food &amp; function</title><description>10-Hydroxy-2-decenoic acid (10-HDA) is a principal active ingredients of royal jelly. Several recent studies demonstrated that 10-HDA has potential anti-type 2 diabetes mellitus (T2DM) properties. To evaluate the anti-T2DM effect of 10-HDA and explore its underlying molecular mechanisms, we used high fat diet (HFD) combined with streptozotocin (STZ) injection to establish a diabetes model. Mice were randomly divided into four groups (8 mice per group): control group, 10-HDA group, T2DM group, and T2DM + 10-HDA group. The 10-HDA and T2DM + 10-HDA groups were administered intragastric 10-HDA (100 mg per kg body weight), while the control and T2DM groups were administered a vehicle, daily for 4 weeks. Our analysis indicated that there was no significant difference in body weight between T2DM + 10-HDA and control group mice ( P &gt; 0.05). Treatment with 10-HDA reduced fasting blood glucose and increased insulin levels in diabetic mice ( P &lt; 0.05), as well as increasing the area of pancreatic islets ( P &lt; 0.05), and alleviating vacuolar degeneration in the liver. Further, 10-HDA intervention increased superoxide dismutase, catalase, and glutathione peroxidase activities in diabetic mouse liver, alleviated lipid peroxidation, inhibited liver NF-κB nuclear translocation, decreased IL-6 and TNF-α content, and increased P-PI3K, P-AKT, and P-GSK3β protein levels (all P &lt; 0.05). Fifteen potential biomarkers were screened by analysis of liver metabolomics data, of which hexadecanamide, stearamide, pentadecanoic acid, and fatty acid esters of hydroxy fatty acids (16:0/18:1) were highly abundant. In conclusion, 10-HDA has clear hypoglycemic effects on diabetic mice, through the PI3K/AKT/GSK3β signaling pathway.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Biomarkers</subject><subject>Blood glucose</subject><subject>Body weight</subject><subject>Catalase</subject><subject>Degeneration</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diet</subject><subject>Esters</subject><subject>Fatty acids</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>High fat diet</subject><subject>Insulin</subject><subject>Interleukin 6</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Liver</subject><subject>Metabolomics</subject><subject>Molecular modelling</subject><subject>NF-κB protein</subject><subject>Nuclear transport</subject><subject>Peroxidase</subject><subject>Peroxidation</subject><subject>Royal jelly</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Streptozocin</subject><subject>Superoxide dismutase</subject><subject>Translocation</subject><subject>Tumor necrosis factor-α</subject><issn>2042-6496</issn><issn>2042-650X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1q3DAUhU1JoSGdTZ5A0E0pqKMfW5aWYfLTkMBkMYXsjCxdjzXYkmvJSZ1nycPW07Sb3M29cD8OnHOy7JyS75Rwtba0CYRLKu2H7JSRnGFRkMeT_3euxKdsFeOBLMOVkkqeZq833WRCBNRD0nXoXOwR-FZ7Az34hOoZUYLb2Y7h94wZtmDAB2eQNs6iJ6dRagE93PK79cXdDkW397pzfo8GndpnPSPnUev2LW50wtZBWsc0wpDCS0jBLE_n7WTAojQPgBiyTteQFv3eGficfWx0F2H1b59lP6-vdpsf-H57c7u5uMeGc55wkVMhgdNS2ILL2hIobCEU0CJnkjZSmNJQpTmXRS1rwXJiBLOCUUvNkkLDz7Kvb7rDGH5NEFPVu2ig67SHMMWKlUSVXJK8XNAv79BDmMbF85FipCyYUHyhvr1RZgwxjtBUw-h6Pc4VJdWxq-qSXm__dnXJ_wCA24ZK</recordid><startdate>20221003</startdate><enddate>20221003</enddate><creator>Hu, Xiyi</creator><creator>Liu, Zhenguo</creator><creator>Lu, Yuntao</creator><creator>Chi, Xuepeng</creator><creator>Han, Kai</creator><creator>Wang, Hongfang</creator><creator>Wang, Ying</creator><creator>Ma, Lanting</creator><creator>Xu, Baohua</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2009-1707</orcidid><orcidid>https://orcid.org/0000-0002-0422-3725</orcidid></search><sort><creationdate>20221003</creationdate><title>Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice</title><author>Hu, Xiyi ; Liu, Zhenguo ; Lu, Yuntao ; Chi, Xuepeng ; Han, Kai ; Wang, Hongfang ; Wang, Ying ; Ma, Lanting ; Xu, Baohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-54168e3176d538bd0e5d569e154281f86c7c19a3385b8b6240c62d621d1c989f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Biomarkers</topic><topic>Blood glucose</topic><topic>Body weight</topic><topic>Catalase</topic><topic>Degeneration</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diet</topic><topic>Esters</topic><topic>Fatty acids</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>High fat diet</topic><topic>Insulin</topic><topic>Interleukin 6</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Liver</topic><topic>Metabolomics</topic><topic>Molecular modelling</topic><topic>NF-κB protein</topic><topic>Nuclear transport</topic><topic>Peroxidase</topic><topic>Peroxidation</topic><topic>Royal jelly</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Streptozocin</topic><topic>Superoxide dismutase</topic><topic>Translocation</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiyi</creatorcontrib><creatorcontrib>Liu, Zhenguo</creatorcontrib><creatorcontrib>Lu, Yuntao</creatorcontrib><creatorcontrib>Chi, Xuepeng</creatorcontrib><creatorcontrib>Han, Kai</creatorcontrib><creatorcontrib>Wang, Hongfang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Ma, Lanting</creatorcontrib><creatorcontrib>Xu, Baohua</creatorcontrib><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Food &amp; function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiyi</au><au>Liu, Zhenguo</au><au>Lu, Yuntao</au><au>Chi, Xuepeng</au><au>Han, Kai</au><au>Wang, Hongfang</au><au>Wang, Ying</au><au>Ma, Lanting</au><au>Xu, Baohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice</atitle><jtitle>Food &amp; function</jtitle><date>2022-10-03</date><risdate>2022</risdate><volume>13</volume><issue>19</issue><spage>9931</spage><epage>9946</epage><pages>9931-9946</pages><issn>2042-6496</issn><eissn>2042-650X</eissn><abstract>10-Hydroxy-2-decenoic acid (10-HDA) is a principal active ingredients of royal jelly. Several recent studies demonstrated that 10-HDA has potential anti-type 2 diabetes mellitus (T2DM) properties. To evaluate the anti-T2DM effect of 10-HDA and explore its underlying molecular mechanisms, we used high fat diet (HFD) combined with streptozotocin (STZ) injection to establish a diabetes model. Mice were randomly divided into four groups (8 mice per group): control group, 10-HDA group, T2DM group, and T2DM + 10-HDA group. The 10-HDA and T2DM + 10-HDA groups were administered intragastric 10-HDA (100 mg per kg body weight), while the control and T2DM groups were administered a vehicle, daily for 4 weeks. Our analysis indicated that there was no significant difference in body weight between T2DM + 10-HDA and control group mice ( P &gt; 0.05). Treatment with 10-HDA reduced fasting blood glucose and increased insulin levels in diabetic mice ( P &lt; 0.05), as well as increasing the area of pancreatic islets ( P &lt; 0.05), and alleviating vacuolar degeneration in the liver. Further, 10-HDA intervention increased superoxide dismutase, catalase, and glutathione peroxidase activities in diabetic mouse liver, alleviated lipid peroxidation, inhibited liver NF-κB nuclear translocation, decreased IL-6 and TNF-α content, and increased P-PI3K, P-AKT, and P-GSK3β protein levels (all P &lt; 0.05). Fifteen potential biomarkers were screened by analysis of liver metabolomics data, of which hexadecanamide, stearamide, pentadecanoic acid, and fatty acid esters of hydroxy fatty acids (16:0/18:1) were highly abundant. In conclusion, 10-HDA has clear hypoglycemic effects on diabetic mice, through the PI3K/AKT/GSK3β signaling pathway.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1fo03818d</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2009-1707</orcidid><orcidid>https://orcid.org/0000-0002-0422-3725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2042-6496
ispartof Food & function, 2022-10, Vol.13 (19), p.9931-9946
issn 2042-6496
2042-650X
language eng
recordid cdi_proquest_miscellaneous_2709738047
source Royal Society Of Chemistry Journals 2008-
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Biomarkers
Blood glucose
Body weight
Catalase
Degeneration
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diet
Esters
Fatty acids
Glucose
Glucose metabolism
Glutathione
Glutathione peroxidase
High fat diet
Insulin
Interleukin 6
Lipid peroxidation
Lipids
Liver
Metabolomics
Molecular modelling
NF-κB protein
Nuclear transport
Peroxidase
Peroxidation
Royal jelly
Signal transduction
Signaling
Streptozocin
Superoxide dismutase
Translocation
Tumor necrosis factor-α
title Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20metabolism%20enhancement%20by%2010-hydroxy-2-decenoic%20acid%20via%20the%20PI3K/AKT%20signaling%20pathway%20in%20high-fat-diet/streptozotocin%20induced%20type%202%20diabetic%20mice&rft.jtitle=Food%20&%20function&rft.au=Hu,%20Xiyi&rft.date=2022-10-03&rft.volume=13&rft.issue=19&rft.spage=9931&rft.epage=9946&rft.pages=9931-9946&rft.issn=2042-6496&rft.eissn=2042-650X&rft_id=info:doi/10.1039/d1fo03818d&rft_dat=%3Cproquest_cross%3E2720752693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720752693&rft_id=info:pmid/&rfr_iscdi=true