Direct numerical simulations of O sub 2 /H sub 2 temporal mixing layers under supercritical conditions

Direct numerical simulations of a supercritical oxygen/hydrogen temporal three-dimensional mixing layer are conducted to explore the features of high-pressure transitional mixing behavior. The conservation equations are formulated according to fluctuation-dissipation theory and are coupled to a modi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2002-05, Vol.40 (5), p.914-926
Hauptverfasser: Okong'o, N, Harstad, K, Bellan, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue 5
container_start_page 914
container_title AIAA journal
container_volume 40
creator Okong'o, N
Harstad, K
Bellan, J
description Direct numerical simulations of a supercritical oxygen/hydrogen temporal three-dimensional mixing layer are conducted to explore the features of high-pressure transitional mixing behavior. The conservation equations are formulated according to fluctuation-dissipation theory and are coupled to a modified Peng-Robinson equation of state. The boundary conditions are periodic in the streamwise and spanwise directions and of nonreflecting outflow type in the cross-stream direction. Simulations are conducted with initial Reynolds numbers of 6 x 10 exp 2 and 7.5 x 10 exp 2 , initial pressure of 100 atm, and temperatures of 400 K in the O sub 2 and 600 K in the H sub 2 stream. Each simulation encompasses the rollup and pairing of four initial spanwise vortices into a single vortex. The layer eventually exhibits distorted regions of high density-gradient-magnitude similar to the experimentally observed wisps of fluid at the boundary of supercritical jets. Analysis of the data reveals that the higher-Reynolds-number layer reaches transition, whereas the other one does not. The transitional layer is analyzed to elucidate its characteristics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27096198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27096198</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_270961983</originalsourceid><addsrcrecordid>eNqNjDkOwjAQRV2ARFjuMBVdRBKWJDWL6GjokXEmaJCX4LEluD1RxAGo_vvS0xuJJMuyPM0322IipszP_hVllSeiPZBHFcBGg56U1MBkopaBnGVwLVyA4x0KWJ1_ENB0zveioTfZB2j5Qc8QbYO-Vzr0ylMYUsrZhobSXIxbqRkXv52J5el43Z_TzrtXRA43Q6xQa2nRRb4VZVbv8rpa_y1-Ab0oSYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27096198</pqid></control><display><type>article</type><title>Direct numerical simulations of O sub 2 /H sub 2 temporal mixing layers under supercritical conditions</title><source>Alma/SFX Local Collection</source><creator>Okong'o, N ; Harstad, K ; Bellan, J</creator><creatorcontrib>Okong'o, N ; Harstad, K ; Bellan, J</creatorcontrib><description>Direct numerical simulations of a supercritical oxygen/hydrogen temporal three-dimensional mixing layer are conducted to explore the features of high-pressure transitional mixing behavior. The conservation equations are formulated according to fluctuation-dissipation theory and are coupled to a modified Peng-Robinson equation of state. The boundary conditions are periodic in the streamwise and spanwise directions and of nonreflecting outflow type in the cross-stream direction. Simulations are conducted with initial Reynolds numbers of 6 x 10 exp 2 and 7.5 x 10 exp 2 , initial pressure of 100 atm, and temperatures of 400 K in the O sub 2 and 600 K in the H sub 2 stream. Each simulation encompasses the rollup and pairing of four initial spanwise vortices into a single vortex. The layer eventually exhibits distorted regions of high density-gradient-magnitude similar to the experimentally observed wisps of fluid at the boundary of supercritical jets. Analysis of the data reveals that the higher-Reynolds-number layer reaches transition, whereas the other one does not. The transitional layer is analyzed to elucidate its characteristics.</description><identifier>ISSN: 0001-1452</identifier><language>eng</language><ispartof>AIAA journal, 2002-05, Vol.40 (5), p.914-926</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Okong'o, N</creatorcontrib><creatorcontrib>Harstad, K</creatorcontrib><creatorcontrib>Bellan, J</creatorcontrib><title>Direct numerical simulations of O sub 2 /H sub 2 temporal mixing layers under supercritical conditions</title><title>AIAA journal</title><description>Direct numerical simulations of a supercritical oxygen/hydrogen temporal three-dimensional mixing layer are conducted to explore the features of high-pressure transitional mixing behavior. The conservation equations are formulated according to fluctuation-dissipation theory and are coupled to a modified Peng-Robinson equation of state. The boundary conditions are periodic in the streamwise and spanwise directions and of nonreflecting outflow type in the cross-stream direction. Simulations are conducted with initial Reynolds numbers of 6 x 10 exp 2 and 7.5 x 10 exp 2 , initial pressure of 100 atm, and temperatures of 400 K in the O sub 2 and 600 K in the H sub 2 stream. Each simulation encompasses the rollup and pairing of four initial spanwise vortices into a single vortex. The layer eventually exhibits distorted regions of high density-gradient-magnitude similar to the experimentally observed wisps of fluid at the boundary of supercritical jets. Analysis of the data reveals that the higher-Reynolds-number layer reaches transition, whereas the other one does not. The transitional layer is analyzed to elucidate its characteristics.</description><issn>0001-1452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNjDkOwjAQRV2ARFjuMBVdRBKWJDWL6GjokXEmaJCX4LEluD1RxAGo_vvS0xuJJMuyPM0322IipszP_hVllSeiPZBHFcBGg56U1MBkopaBnGVwLVyA4x0KWJ1_ENB0zveioTfZB2j5Qc8QbYO-Vzr0ylMYUsrZhobSXIxbqRkXv52J5el43Z_TzrtXRA43Q6xQa2nRRb4VZVbv8rpa_y1-Ab0oSYE</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Okong'o, N</creator><creator>Harstad, K</creator><creator>Bellan, J</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20020501</creationdate><title>Direct numerical simulations of O sub 2 /H sub 2 temporal mixing layers under supercritical conditions</title><author>Okong'o, N ; Harstad, K ; Bellan, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_270961983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okong'o, N</creatorcontrib><creatorcontrib>Harstad, K</creatorcontrib><creatorcontrib>Bellan, J</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okong'o, N</au><au>Harstad, K</au><au>Bellan, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulations of O sub 2 /H sub 2 temporal mixing layers under supercritical conditions</atitle><jtitle>AIAA journal</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>40</volume><issue>5</issue><spage>914</spage><epage>926</epage><pages>914-926</pages><issn>0001-1452</issn><abstract>Direct numerical simulations of a supercritical oxygen/hydrogen temporal three-dimensional mixing layer are conducted to explore the features of high-pressure transitional mixing behavior. The conservation equations are formulated according to fluctuation-dissipation theory and are coupled to a modified Peng-Robinson equation of state. The boundary conditions are periodic in the streamwise and spanwise directions and of nonreflecting outflow type in the cross-stream direction. Simulations are conducted with initial Reynolds numbers of 6 x 10 exp 2 and 7.5 x 10 exp 2 , initial pressure of 100 atm, and temperatures of 400 K in the O sub 2 and 600 K in the H sub 2 stream. Each simulation encompasses the rollup and pairing of four initial spanwise vortices into a single vortex. The layer eventually exhibits distorted regions of high density-gradient-magnitude similar to the experimentally observed wisps of fluid at the boundary of supercritical jets. Analysis of the data reveals that the higher-Reynolds-number layer reaches transition, whereas the other one does not. The transitional layer is analyzed to elucidate its characteristics.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2002-05, Vol.40 (5), p.914-926
issn 0001-1452
language eng
recordid cdi_proquest_miscellaneous_27096198
source Alma/SFX Local Collection
title Direct numerical simulations of O sub 2 /H sub 2 temporal mixing layers under supercritical conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulations%20of%20O%20sub%202%20/H%20sub%202%20temporal%20mixing%20layers%20under%20supercritical%20conditions&rft.jtitle=AIAA%20journal&rft.au=Okong'o,%20N&rft.date=2002-05-01&rft.volume=40&rft.issue=5&rft.spage=914&rft.epage=926&rft.pages=914-926&rft.issn=0001-1452&rft_id=info:doi/&rft_dat=%3Cproquest%3E27096198%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27096198&rft_id=info:pmid/&rfr_iscdi=true