DOA estimation using fast EM and SAGE algorithms
In this work we study direction of arrival estimation using expectation-maximization (EM) and space alternating generalized EM (SAGE) algorithms. The EM algorithm is a general and popular numerical method for finding maximum-likelihood estimates which is characterized by simple implementation and st...
Gespeichert in:
Veröffentlicht in: | Signal processing 2002-11, Vol.82 (11), p.1753-1762 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1762 |
---|---|
container_issue | 11 |
container_start_page | 1753 |
container_title | Signal processing |
container_volume | 82 |
creator | Chung, Pei Jung Böhme, Johann F. |
description | In this work we study direction of arrival estimation using expectation-maximization (EM) and space alternating generalized EM (SAGE) algorithms. The EM algorithm is a general and popular numerical method for finding maximum-likelihood estimates which is characterized by simple implementation and stable convergence. The SAGE algorithm, a generalized form of the EM algorithm, allows a more flexible optimization scheme and sometimes converges faster than the EM algorithm. Motivated by the componentwise convergence of the EM and SAGE algorithms, we suggest to use smaller search spaces after a few iterations. In this way, the overall computational costs can be reduced drastically. A procedure derived from the convergence properties of the EM and SAGE algorithms is proposed to determine the search spaces adaptively. By numerical experiments we demonstrate that the fast EM and the fast SAGE algorithms are computationally more efficient and have the same statistical performance as the original algorithms. |
doi_str_mv | 10.1016/S0165-1684(02)00337-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27095877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168402003377</els_id><sourcerecordid>27095877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d5b10a7ddfd04e37586aa03ee7f6c588e399d748a29d0c61953022bbb8625e9f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEi5gOAQWNvx3wlVpRSkoh4KZ8uxnWKUJsVOkXh70hbBkcvu5ZudnUHoHMMNBsxvF_1gOeayuAJyDUCpyMUBGmApSC4YE4do8Isco5OU3gEAUw4DBPfzUeZTF1amC22TbVJollllUpdNnjPTuGwxmk4yUy_bGLq3VTpFR5Wpkz_72UP0-jB5GT_ms_n0aTya5ZZy2eWOlRiMcK5yUHgqmOTGAPVeVNwyKT1VyolCGqIcWI4Vo0BIWZaSE-ZVRYfocn93HduPTf-hXoVkfV2bxrebpIkAxaQQPcj2oI1tStFXeh37NPFLY9DbfvSuH70Nr4HoXT96q7v4MTDJmrqKprEh_YmpKqQkRc_d7Tnfp_0MPupkg2-sdyF622nXhn-cvgHbTHd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27095877</pqid></control><display><type>article</type><title>DOA estimation using fast EM and SAGE algorithms</title><source>Elsevier ScienceDirect Journals</source><creator>Chung, Pei Jung ; Böhme, Johann F.</creator><creatorcontrib>Chung, Pei Jung ; Böhme, Johann F.</creatorcontrib><description>In this work we study direction of arrival estimation using expectation-maximization (EM) and space alternating generalized EM (SAGE) algorithms. The EM algorithm is a general and popular numerical method for finding maximum-likelihood estimates which is characterized by simple implementation and stable convergence. The SAGE algorithm, a generalized form of the EM algorithm, allows a more flexible optimization scheme and sometimes converges faster than the EM algorithm. Motivated by the componentwise convergence of the EM and SAGE algorithms, we suggest to use smaller search spaces after a few iterations. In this way, the overall computational costs can be reduced drastically. A procedure derived from the convergence properties of the EM and SAGE algorithms is proposed to determine the search spaces adaptively. By numerical experiments we demonstrate that the fast EM and the fast SAGE algorithms are computationally more efficient and have the same statistical performance as the original algorithms.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/S0165-1684(02)00337-7</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Componentwise convergence ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; EM algorithm ; Exact sciences and technology ; Information, signal and communications theory ; SAGE algorithm ; Signal and communications theory ; Signal, noise ; Telecommunications and information theory</subject><ispartof>Signal processing, 2002-11, Vol.82 (11), p.1753-1762</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d5b10a7ddfd04e37586aa03ee7f6c588e399d748a29d0c61953022bbb8625e9f3</citedby><cites>FETCH-LOGICAL-c368t-d5b10a7ddfd04e37586aa03ee7f6c588e399d748a29d0c61953022bbb8625e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165168402003377$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13948824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Pei Jung</creatorcontrib><creatorcontrib>Böhme, Johann F.</creatorcontrib><title>DOA estimation using fast EM and SAGE algorithms</title><title>Signal processing</title><description>In this work we study direction of arrival estimation using expectation-maximization (EM) and space alternating generalized EM (SAGE) algorithms. The EM algorithm is a general and popular numerical method for finding maximum-likelihood estimates which is characterized by simple implementation and stable convergence. The SAGE algorithm, a generalized form of the EM algorithm, allows a more flexible optimization scheme and sometimes converges faster than the EM algorithm. Motivated by the componentwise convergence of the EM and SAGE algorithms, we suggest to use smaller search spaces after a few iterations. In this way, the overall computational costs can be reduced drastically. A procedure derived from the convergence properties of the EM and SAGE algorithms is proposed to determine the search spaces adaptively. By numerical experiments we demonstrate that the fast EM and the fast SAGE algorithms are computationally more efficient and have the same statistical performance as the original algorithms.</description><subject>Applied sciences</subject><subject>Componentwise convergence</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>EM algorithm</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>SAGE algorithm</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCEi5gOAQWNvx3wlVpRSkoh4KZ8uxnWKUJsVOkXh70hbBkcvu5ZudnUHoHMMNBsxvF_1gOeayuAJyDUCpyMUBGmApSC4YE4do8Isco5OU3gEAUw4DBPfzUeZTF1amC22TbVJollllUpdNnjPTuGwxmk4yUy_bGLq3VTpFR5Wpkz_72UP0-jB5GT_ms_n0aTya5ZZy2eWOlRiMcK5yUHgqmOTGAPVeVNwyKT1VyolCGqIcWI4Vo0BIWZaSE-ZVRYfocn93HduPTf-hXoVkfV2bxrebpIkAxaQQPcj2oI1tStFXeh37NPFLY9DbfvSuH70Nr4HoXT96q7v4MTDJmrqKprEh_YmpKqQkRc_d7Tnfp_0MPupkg2-sdyF622nXhn-cvgHbTHd0</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Chung, Pei Jung</creator><creator>Böhme, Johann F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20021101</creationdate><title>DOA estimation using fast EM and SAGE algorithms</title><author>Chung, Pei Jung ; Böhme, Johann F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d5b10a7ddfd04e37586aa03ee7f6c588e399d748a29d0c61953022bbb8625e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Componentwise convergence</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>EM algorithm</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>SAGE algorithm</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Pei Jung</creatorcontrib><creatorcontrib>Böhme, Johann F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Pei Jung</au><au>Böhme, Johann F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOA estimation using fast EM and SAGE algorithms</atitle><jtitle>Signal processing</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>82</volume><issue>11</issue><spage>1753</spage><epage>1762</epage><pages>1753-1762</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this work we study direction of arrival estimation using expectation-maximization (EM) and space alternating generalized EM (SAGE) algorithms. The EM algorithm is a general and popular numerical method for finding maximum-likelihood estimates which is characterized by simple implementation and stable convergence. The SAGE algorithm, a generalized form of the EM algorithm, allows a more flexible optimization scheme and sometimes converges faster than the EM algorithm. Motivated by the componentwise convergence of the EM and SAGE algorithms, we suggest to use smaller search spaces after a few iterations. In this way, the overall computational costs can be reduced drastically. A procedure derived from the convergence properties of the EM and SAGE algorithms is proposed to determine the search spaces adaptively. By numerical experiments we demonstrate that the fast EM and the fast SAGE algorithms are computationally more efficient and have the same statistical performance as the original algorithms.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0165-1684(02)00337-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2002-11, Vol.82 (11), p.1753-1762 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_27095877 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Componentwise convergence Detection, estimation, filtering, equalization, prediction Direction of arrival estimation EM algorithm Exact sciences and technology Information, signal and communications theory SAGE algorithm Signal and communications theory Signal, noise Telecommunications and information theory |
title | DOA estimation using fast EM and SAGE algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOA%20estimation%20using%20fast%20EM%20and%20SAGE%20algorithms&rft.jtitle=Signal%20processing&rft.au=Chung,%20Pei%20Jung&rft.date=2002-11-01&rft.volume=82&rft.issue=11&rft.spage=1753&rft.epage=1762&rft.pages=1753-1762&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/S0165-1684(02)00337-7&rft_dat=%3Cproquest_cross%3E27095877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27095877&rft_id=info:pmid/&rft_els_id=S0165168402003377&rfr_iscdi=true |