Controlling angular oscillations through mass reconfiguration: a variable length pendulum case

The control of angular oscillations or energy of a system through mass reconfiguration is examined using a variable length pendulum. Control is accomplished by sliding the end mass towards and away from the pivot as the pendulum oscillates. The resulting attenuation or amplification of the angular o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2002, Vol.37 (1), p.89-99
Hauptverfasser: Stilling, Denise S.D., Szyszkowski, Walerian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 89
container_title International journal of non-linear mechanics
container_volume 37
creator Stilling, Denise S.D.
Szyszkowski, Walerian
description The control of angular oscillations or energy of a system through mass reconfiguration is examined using a variable length pendulum. Control is accomplished by sliding the end mass towards and away from the pivot as the pendulum oscillates. The resulting attenuation or amplification of the angular oscillations are explained using the Coriolis inertia force and by examining the energy variation during an oscillation cycle. Simple rules relating the sliding motion to the angular oscillations are proposed and assessed using numerical simulations. An equivalent viscous damping ratio is introduced to quantify the attenuation/amplification phenomena. Sliding motion profiles for achieving attenuation have been simulated with the results being discussed in detail.
doi_str_mv 10.1016/S0020-7462(00)00099-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27092171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746200000998</els_id><sourcerecordid>27092171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5f187afd44b4694742cf5da6eb08cb88a5ea4d4c0fce59190c91407732ac7e823</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoZukP6GgS0t6cDOyZVvOJYQlH4VAD0mvFbPy2KuilbaSHci_r3Y3JMec5jDPOx8PY18E_BAgmvMHgBKKVjblGcB3AOi6Qn1gC6FaVdRNpY7Y4hX5xI5T-gs5J6FdsD_L4KcYnLN-5OjH2WHkIRnrHE42-MSndQzzuOYbTIlHMsEPdpzjvnvBkT9htLhyxB35cVrzLfl-dvOGG0x0yj4O6BJ9fqkn7PfN9ePyrrj_dftzeXVfGFnJqaiHfCsOvZQr2XSylaUZ6h4bWoEyK6WwJpS9NDAYqjvRgelEPr-tSjQtqbI6Yd8Oc7cx_JspTXpjk6H8hKcwJ1220JWiFRmsD6CJIaVIg95Gu8H4rAXonU29t6l3qjSA3tvUKue-vizAZNANEb2x6S1cVZ2CWmbu8sBR_vbJUtTZJXlDvc3uJt0H-86m_8ZUivM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27092171</pqid></control><display><type>article</type><title>Controlling angular oscillations through mass reconfiguration: a variable length pendulum case</title><source>Elsevier ScienceDirect Journals</source><creator>Stilling, Denise S.D. ; Szyszkowski, Walerian</creator><creatorcontrib>Stilling, Denise S.D. ; Szyszkowski, Walerian</creatorcontrib><description>The control of angular oscillations or energy of a system through mass reconfiguration is examined using a variable length pendulum. Control is accomplished by sliding the end mass towards and away from the pivot as the pendulum oscillates. The resulting attenuation or amplification of the angular oscillations are explained using the Coriolis inertia force and by examining the energy variation during an oscillation cycle. Simple rules relating the sliding motion to the angular oscillations are proposed and assessed using numerical simulations. An equivalent viscous damping ratio is introduced to quantify the attenuation/amplification phenomena. Sliding motion profiles for achieving attenuation have been simulated with the results being discussed in detail.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/S0020-7462(00)00099-8</identifier><identifier>CODEN: IJNMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mass reconfiguration ; Oscillations control ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Variable length pendulum</subject><ispartof>International journal of non-linear mechanics, 2002, Vol.37 (1), p.89-99</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5f187afd44b4694742cf5da6eb08cb88a5ea4d4c0fce59190c91407732ac7e823</citedby><cites>FETCH-LOGICAL-c434t-5f187afd44b4694742cf5da6eb08cb88a5ea4d4c0fce59190c91407732ac7e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746200000998$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13398054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stilling, Denise S.D.</creatorcontrib><creatorcontrib>Szyszkowski, Walerian</creatorcontrib><title>Controlling angular oscillations through mass reconfiguration: a variable length pendulum case</title><title>International journal of non-linear mechanics</title><description>The control of angular oscillations or energy of a system through mass reconfiguration is examined using a variable length pendulum. Control is accomplished by sliding the end mass towards and away from the pivot as the pendulum oscillates. The resulting attenuation or amplification of the angular oscillations are explained using the Coriolis inertia force and by examining the energy variation during an oscillation cycle. Simple rules relating the sliding motion to the angular oscillations are proposed and assessed using numerical simulations. An equivalent viscous damping ratio is introduced to quantify the attenuation/amplification phenomena. Sliding motion profiles for achieving attenuation have been simulated with the results being discussed in detail.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mass reconfiguration</subject><subject>Oscillations control</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Variable length pendulum</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoZukP6GgS0t6cDOyZVvOJYQlH4VAD0mvFbPy2KuilbaSHci_r3Y3JMec5jDPOx8PY18E_BAgmvMHgBKKVjblGcB3AOi6Qn1gC6FaVdRNpY7Y4hX5xI5T-gs5J6FdsD_L4KcYnLN-5OjH2WHkIRnrHE42-MSndQzzuOYbTIlHMsEPdpzjvnvBkT9htLhyxB35cVrzLfl-dvOGG0x0yj4O6BJ9fqkn7PfN9ePyrrj_dftzeXVfGFnJqaiHfCsOvZQr2XSylaUZ6h4bWoEyK6WwJpS9NDAYqjvRgelEPr-tSjQtqbI6Yd8Oc7cx_JspTXpjk6H8hKcwJ1220JWiFRmsD6CJIaVIg95Gu8H4rAXonU29t6l3qjSA3tvUKue-vizAZNANEb2x6S1cVZ2CWmbu8sBR_vbJUtTZJXlDvc3uJt0H-86m_8ZUivM</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Stilling, Denise S.D.</creator><creator>Szyszkowski, Walerian</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2002</creationdate><title>Controlling angular oscillations through mass reconfiguration: a variable length pendulum case</title><author>Stilling, Denise S.D. ; Szyszkowski, Walerian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5f187afd44b4694742cf5da6eb08cb88a5ea4d4c0fce59190c91407732ac7e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mass reconfiguration</topic><topic>Oscillations control</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Variable length pendulum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stilling, Denise S.D.</creatorcontrib><creatorcontrib>Szyszkowski, Walerian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stilling, Denise S.D.</au><au>Szyszkowski, Walerian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling angular oscillations through mass reconfiguration: a variable length pendulum case</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2002</date><risdate>2002</risdate><volume>37</volume><issue>1</issue><spage>89</spage><epage>99</epage><pages>89-99</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><coden>IJNMAG</coden><abstract>The control of angular oscillations or energy of a system through mass reconfiguration is examined using a variable length pendulum. Control is accomplished by sliding the end mass towards and away from the pivot as the pendulum oscillates. The resulting attenuation or amplification of the angular oscillations are explained using the Coriolis inertia force and by examining the energy variation during an oscillation cycle. Simple rules relating the sliding motion to the angular oscillations are proposed and assessed using numerical simulations. An equivalent viscous damping ratio is introduced to quantify the attenuation/amplification phenomena. Sliding motion profiles for achieving attenuation have been simulated with the results being discussed in detail.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7462(00)00099-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2002, Vol.37 (1), p.89-99
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_27092171
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mass reconfiguration
Oscillations control
Physics
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Variable length pendulum
title Controlling angular oscillations through mass reconfiguration: a variable length pendulum case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20angular%20oscillations%20through%20mass%20reconfiguration:%20a%20variable%20length%20pendulum%20case&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Stilling,%20Denise%20S.D.&rft.date=2002&rft.volume=37&rft.issue=1&rft.spage=89&rft.epage=99&rft.pages=89-99&rft.issn=0020-7462&rft.eissn=1878-5638&rft.coden=IJNMAG&rft_id=info:doi/10.1016/S0020-7462(00)00099-8&rft_dat=%3Cproquest_cross%3E27092171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27092171&rft_id=info:pmid/&rft_els_id=S0020746200000998&rfr_iscdi=true