DC arc photography and modelling

Direct-current arc furnaces operate with a graphite cathode positioned above a molten slag and metal bath contained inside a furnace vessel. The plasma arc, consisting of ionised particles at extremely high temperatures, forms a conducting path between the graphite cathode and the molten bath. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals engineering 2002-11, Vol.15 (11), p.985-991
Hauptverfasser: Jones, R.T, Reynolds, Q.G, Alport, M.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue 11
container_start_page 985
container_title Minerals engineering
container_volume 15
creator Jones, R.T
Reynolds, Q.G
Alport, M.J
description Direct-current arc furnaces operate with a graphite cathode positioned above a molten slag and metal bath contained inside a furnace vessel. The plasma arc, consisting of ionised particles at extremely high temperatures, forms a conducting path between the graphite cathode and the molten bath. The power provided by the arc can be controlled by adjusting the arc length and the current. The high-intensity plasma arc emanates from a relatively small attachment area on the graphite electrode, and extends down to the surface of the molten bath. Photographs of the arc are presented and compared to models of the shape of the arc. These models provide a description of how the arc voltage varies as a function of arc length and current, for a given set of conditions in the furnace. The arc attachment zone, where the arc impinges on the molten slag surface, is highly turbulent and operates at a very high temperature. This promotes very rapid melting, fast reaction kinetics, and effective mixing. The impingement of the arc causes a crater-like depression in the surface of the slag. This has a significant effect on the distribution of current in the molten slag, and the voltage drop across the slag. The shape and size of this depression has been photographed, and the resulting information used in a model of the depression.
doi_str_mv 10.1016/S0892-6875(02)00167-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27091578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089268750200167X</els_id><sourcerecordid>27091578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-fb3f9d979035fed788242ac8836f850a951eb14e8539a2ddf2fb712db63ca6b23</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiNoovRm0xmkqxE6hMKLlToLmTyaCPTmTGZCv33pq3o0tWFy3fuuecgdIrhCgOurl-BC5JXnJUXQC4hrVg-20MjzBnJBaV0H41-kUN0FOMHAJSMixHK7iaZCjrrF93QzYPqF-tMtSZbdsY2jW_nx-jAqSbak585Ru8P92-Tp3z68vg8uZ3muqj4kLu6cMIIJqAonTWMc0KJ0pwXleMlKFFiW2NqeVkIRYxxxNUME1NXhVZVTYoxOt_d7UP3ubJxkEsfdfpBtbZbRUkYCJx-TmC5A3XoYgzWyT74pQpriUFu-pDbPuQmrAQit33IWdKd_RioqFXjgmq1j39iSoEArRJ3s-NsSvvlbZBRe9tqa3ywepCm8_84fQO2vXMq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27091578</pqid></control><display><type>article</type><title>DC arc photography and modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Jones, R.T ; Reynolds, Q.G ; Alport, M.J</creator><creatorcontrib>Jones, R.T ; Reynolds, Q.G ; Alport, M.J</creatorcontrib><description>Direct-current arc furnaces operate with a graphite cathode positioned above a molten slag and metal bath contained inside a furnace vessel. The plasma arc, consisting of ionised particles at extremely high temperatures, forms a conducting path between the graphite cathode and the molten bath. The power provided by the arc can be controlled by adjusting the arc length and the current. The high-intensity plasma arc emanates from a relatively small attachment area on the graphite electrode, and extends down to the surface of the molten bath. Photographs of the arc are presented and compared to models of the shape of the arc. These models provide a description of how the arc voltage varies as a function of arc length and current, for a given set of conditions in the furnace. The arc attachment zone, where the arc impinges on the molten slag surface, is highly turbulent and operates at a very high temperature. This promotes very rapid melting, fast reaction kinetics, and effective mixing. The impingement of the arc causes a crater-like depression in the surface of the slag. This has a significant effect on the distribution of current in the molten slag, and the voltage drop across the slag. The shape and size of this depression has been photographed, and the resulting information used in a model of the depression.</description><identifier>ISSN: 0892-6875</identifier><identifier>EISSN: 1872-9444</identifier><identifier>DOI: 10.1016/S0892-6875(02)00167-X</identifier><identifier>CODEN: MENGEB</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Extractive metallurgy ; Metals. Metallurgy ; Modelling ; Production of metals ; Production of non ferrous metals. Process materials ; Pyrometallurgy</subject><ispartof>Minerals engineering, 2002-11, Vol.15 (11), p.985-991</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-fb3f9d979035fed788242ac8836f850a951eb14e8539a2ddf2fb712db63ca6b23</citedby><cites>FETCH-LOGICAL-c368t-fb3f9d979035fed788242ac8836f850a951eb14e8539a2ddf2fb712db63ca6b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089268750200167X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14402046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, R.T</creatorcontrib><creatorcontrib>Reynolds, Q.G</creatorcontrib><creatorcontrib>Alport, M.J</creatorcontrib><title>DC arc photography and modelling</title><title>Minerals engineering</title><description>Direct-current arc furnaces operate with a graphite cathode positioned above a molten slag and metal bath contained inside a furnace vessel. The plasma arc, consisting of ionised particles at extremely high temperatures, forms a conducting path between the graphite cathode and the molten bath. The power provided by the arc can be controlled by adjusting the arc length and the current. The high-intensity plasma arc emanates from a relatively small attachment area on the graphite electrode, and extends down to the surface of the molten bath. Photographs of the arc are presented and compared to models of the shape of the arc. These models provide a description of how the arc voltage varies as a function of arc length and current, for a given set of conditions in the furnace. The arc attachment zone, where the arc impinges on the molten slag surface, is highly turbulent and operates at a very high temperature. This promotes very rapid melting, fast reaction kinetics, and effective mixing. The impingement of the arc causes a crater-like depression in the surface of the slag. This has a significant effect on the distribution of current in the molten slag, and the voltage drop across the slag. The shape and size of this depression has been photographed, and the resulting information used in a model of the depression.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Extractive metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Modelling</subject><subject>Production of metals</subject><subject>Production of non ferrous metals. Process materials</subject><subject>Pyrometallurgy</subject><issn>0892-6875</issn><issn>1872-9444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiNoovRm0xmkqxE6hMKLlToLmTyaCPTmTGZCv33pq3o0tWFy3fuuecgdIrhCgOurl-BC5JXnJUXQC4hrVg-20MjzBnJBaV0H41-kUN0FOMHAJSMixHK7iaZCjrrF93QzYPqF-tMtSZbdsY2jW_nx-jAqSbak585Ru8P92-Tp3z68vg8uZ3muqj4kLu6cMIIJqAonTWMc0KJ0pwXleMlKFFiW2NqeVkIRYxxxNUME1NXhVZVTYoxOt_d7UP3ubJxkEsfdfpBtbZbRUkYCJx-TmC5A3XoYgzWyT74pQpriUFu-pDbPuQmrAQit33IWdKd_RioqFXjgmq1j39iSoEArRJ3s-NsSvvlbZBRe9tqa3ywepCm8_84fQO2vXMq</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Jones, R.T</creator><creator>Reynolds, Q.G</creator><creator>Alport, M.J</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20021101</creationdate><title>DC arc photography and modelling</title><author>Jones, R.T ; Reynolds, Q.G ; Alport, M.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-fb3f9d979035fed788242ac8836f850a951eb14e8539a2ddf2fb712db63ca6b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Extractive metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Modelling</topic><topic>Production of metals</topic><topic>Production of non ferrous metals. Process materials</topic><topic>Pyrometallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, R.T</creatorcontrib><creatorcontrib>Reynolds, Q.G</creatorcontrib><creatorcontrib>Alport, M.J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Minerals engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, R.T</au><au>Reynolds, Q.G</au><au>Alport, M.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC arc photography and modelling</atitle><jtitle>Minerals engineering</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>15</volume><issue>11</issue><spage>985</spage><epage>991</epage><pages>985-991</pages><issn>0892-6875</issn><eissn>1872-9444</eissn><coden>MENGEB</coden><abstract>Direct-current arc furnaces operate with a graphite cathode positioned above a molten slag and metal bath contained inside a furnace vessel. The plasma arc, consisting of ionised particles at extremely high temperatures, forms a conducting path between the graphite cathode and the molten bath. The power provided by the arc can be controlled by adjusting the arc length and the current. The high-intensity plasma arc emanates from a relatively small attachment area on the graphite electrode, and extends down to the surface of the molten bath. Photographs of the arc are presented and compared to models of the shape of the arc. These models provide a description of how the arc voltage varies as a function of arc length and current, for a given set of conditions in the furnace. The arc attachment zone, where the arc impinges on the molten slag surface, is highly turbulent and operates at a very high temperature. This promotes very rapid melting, fast reaction kinetics, and effective mixing. The impingement of the arc causes a crater-like depression in the surface of the slag. This has a significant effect on the distribution of current in the molten slag, and the voltage drop across the slag. The shape and size of this depression has been photographed, and the resulting information used in a model of the depression.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0892-6875(02)00167-X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6875
ispartof Minerals engineering, 2002-11, Vol.15 (11), p.985-991
issn 0892-6875
1872-9444
language eng
recordid cdi_proquest_miscellaneous_27091578
source Elsevier ScienceDirect Journals
subjects Applied sciences
Exact sciences and technology
Extractive metallurgy
Metals. Metallurgy
Modelling
Production of metals
Production of non ferrous metals. Process materials
Pyrometallurgy
title DC arc photography and modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%20arc%20photography%20and%20modelling&rft.jtitle=Minerals%20engineering&rft.au=Jones,%20R.T&rft.date=2002-11-01&rft.volume=15&rft.issue=11&rft.spage=985&rft.epage=991&rft.pages=985-991&rft.issn=0892-6875&rft.eissn=1872-9444&rft.coden=MENGEB&rft_id=info:doi/10.1016/S0892-6875(02)00167-X&rft_dat=%3Cproquest_cross%3E27091578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27091578&rft_id=info:pmid/&rft_els_id=S089268750200167X&rfr_iscdi=true