Computational Modeling of Shock and Impact Response of Alumina

This paper presents detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading states. Using a shock-wave-propagation-based finite element code, one and two-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2002-06, Vol.3 (3), p.367-380
Hauptverfasser: Rajendran, A M, Grove, D J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 3
container_start_page 367
container_title Computer modeling in engineering & sciences
container_volume 3
creator Rajendran, A M
Grove, D J
description This paper presents detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading states. Using a shock-wave-propagation-based finite element code, one and two-dimensional simulations were performed for the following shock and impact configurations: plate-on-plate impact; rod-on-rod impact; single-density plate-on-rod impact; graded-density plate-on-rod impact; and rod penetration into a thick plate. The detailed analyses presented in this paper include a model constant sensitivity study through comparisons of computed wave profiles with experimental measurements.
doi_str_mv 10.3970/cmes.2002.003.367
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27091491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397967183</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-2a6f0d9179dfed30d7984f0cf9df4373bbf83bec71f0786f3fe2247931946b323</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-AG8BwVvrJNNNmouwLH4srAh-nJc0H9q1Teqm_f9G1IuneYf3YeAZQs4ZlKgkXJnepZID8BIASxTygMzYgouCLUAc_uVK8WNyktIuQwJrNSPXq9gP06jHNgbd0YdoXdeGNxo9fX6P5oPqYOm6H7QZ6ZNLQwzJfZfLburboE_Jkdddcme_c05eb29eVvfF5vFuvVpuioEzPhZcCw9WMamsdxbBSlVXHozPe4USm8bX2DgjmQdZC4_ecV5JhUxVokGOc3L5c3fYx8_JpXHbt8m4rtPBxSltuQSV7VgGL_6Buzjts1pm8qOUkKxG_AIo11hO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397967183</pqid></control><display><type>article</type><title>Computational Modeling of Shock and Impact Response of Alumina</title><source>Tech Science Press</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rajendran, A M ; Grove, D J</creator><creatorcontrib>Rajendran, A M ; Grove, D J</creatorcontrib><description>This paper presents detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading states. Using a shock-wave-propagation-based finite element code, one and two-dimensional simulations were performed for the following shock and impact configurations: plate-on-plate impact; rod-on-rod impact; single-density plate-on-rod impact; graded-density plate-on-rod impact; and rod penetration into a thick plate. The detailed analyses presented in this paper include a model constant sensitivity study through comparisons of computed wave profiles with experimental measurements.</description><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.3970/cmes.2002.003.367</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Aluminum oxide ; Computer simulation ; Constitutive relationships ; Density ; Impact response ; Shock wave propagation ; Shock waves ; Stress propagation ; Thick plates</subject><ispartof>Computer modeling in engineering &amp; sciences, 2002-06, Vol.3 (3), p.367-380</ispartof><rights>2002. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rajendran, A M</creatorcontrib><creatorcontrib>Grove, D J</creatorcontrib><title>Computational Modeling of Shock and Impact Response of Alumina</title><title>Computer modeling in engineering &amp; sciences</title><description>This paper presents detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading states. Using a shock-wave-propagation-based finite element code, one and two-dimensional simulations were performed for the following shock and impact configurations: plate-on-plate impact; rod-on-rod impact; single-density plate-on-rod impact; graded-density plate-on-rod impact; and rod penetration into a thick plate. The detailed analyses presented in this paper include a model constant sensitivity study through comparisons of computed wave profiles with experimental measurements.</description><subject>Aluminum oxide</subject><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Density</subject><subject>Impact response</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Stress propagation</subject><subject>Thick plates</subject><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LxDAQhoMouK7-AG8BwVvrJNNNmouwLH4srAh-nJc0H9q1Teqm_f9G1IuneYf3YeAZQs4ZlKgkXJnepZID8BIASxTygMzYgouCLUAc_uVK8WNyktIuQwJrNSPXq9gP06jHNgbd0YdoXdeGNxo9fX6P5oPqYOm6H7QZ6ZNLQwzJfZfLburboE_Jkdddcme_c05eb29eVvfF5vFuvVpuioEzPhZcCw9WMamsdxbBSlVXHozPe4USm8bX2DgjmQdZC4_ecV5JhUxVokGOc3L5c3fYx8_JpXHbt8m4rtPBxSltuQSV7VgGL_6Buzjts1pm8qOUkKxG_AIo11hO</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Rajendran, A M</creator><creator>Grove, D J</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>H8D</scope></search><sort><creationdate>20020601</creationdate><title>Computational Modeling of Shock and Impact Response of Alumina</title><author>Rajendran, A M ; Grove, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-2a6f0d9179dfed30d7984f0cf9df4373bbf83bec71f0786f3fe2247931946b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum oxide</topic><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Density</topic><topic>Impact response</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Stress propagation</topic><topic>Thick plates</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajendran, A M</creatorcontrib><creatorcontrib>Grove, D J</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Aerospace Database</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajendran, A M</au><au>Grove, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Modeling of Shock and Impact Response of Alumina</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>3</volume><issue>3</issue><spage>367</spage><epage>380</epage><pages>367-380</pages><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>This paper presents detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading states. Using a shock-wave-propagation-based finite element code, one and two-dimensional simulations were performed for the following shock and impact configurations: plate-on-plate impact; rod-on-rod impact; single-density plate-on-rod impact; graded-density plate-on-rod impact; and rod penetration into a thick plate. The detailed analyses presented in this paper include a model constant sensitivity study through comparisons of computed wave profiles with experimental measurements.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmes.2002.003.367</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2002-06, Vol.3 (3), p.367-380
issn 1526-1492
1526-1506
language eng
recordid cdi_proquest_miscellaneous_27091491
source Tech Science Press; EZB-FREE-00999 freely available EZB journals
subjects Aluminum oxide
Computer simulation
Constitutive relationships
Density
Impact response
Shock wave propagation
Shock waves
Stress propagation
Thick plates
title Computational Modeling of Shock and Impact Response of Alumina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Modeling%20of%20Shock%20and%20Impact%20Response%20of%20Alumina&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Rajendran,%20A%20M&rft.date=2002-06-01&rft.volume=3&rft.issue=3&rft.spage=367&rft.epage=380&rft.pages=367-380&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.3970/cmes.2002.003.367&rft_dat=%3Cproquest%3E2397967183%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397967183&rft_id=info:pmid/&rfr_iscdi=true