Intralayer charge-transfer moiré excitons in van der Waals superlattices

Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established 1 – 4 through optical meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-09, Vol.609 (7925), p.52-57
Hauptverfasser: Naik, Mit H., Regan, Emma C., Zhang, Zuocheng, Chan, Yang-Hao, Li, Zhenglu, Wang, Danqing, Yoon, Yoseob, Ong, Chin Shen, Zhao, Wenyu, Zhao, Sihan, Utama, M. Iqbal Bakti, Gao, Beini, Wei, Xin, Sayyad, Mohammed, Yumigeta, Kentaro, Watanabe, Kenji, Taniguchi, Takashi, Tongay, Sefaattin, da Jornada, Felipe H., Wang, Feng, Louie, Steven G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 7925
container_start_page 52
container_title Nature (London)
container_volume 609
creator Naik, Mit H.
Regan, Emma C.
Zhang, Zuocheng
Chan, Yang-Hao
Li, Zhenglu
Wang, Danqing
Yoon, Yoseob
Ong, Chin Shen
Zhao, Wenyu
Zhao, Sihan
Utama, M. Iqbal Bakti
Gao, Beini
Wei, Xin
Sayyad, Mohammed
Yumigeta, Kentaro
Watanabe, Kenji
Taniguchi, Takashi
Tongay, Sefaattin
da Jornada, Felipe H.
Wang, Feng
Louie, Steven G.
description Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established 1 – 4 through optical measurements, the microscopic nature of these states is still poorly understood, often relying on empirically fit models. Here, combining large-scale first-principles GW (where G and W denote the one-particle Green's function and the screened Coulomb interaction, respectively) plus Bethe–Salpeter calculations and micro-reflection spectroscopy, we identify the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices, discovering a rich set of moiré excitons that cannot be captured by prevailing continuum models. Our calculations show moiré excitons with distinct characters, including modulated Wannier excitons and previously unidentified intralayer charge-transfer excitons. Signatures of these distinct excitonic characters are confirmed experimentally by the unique carrier-density and magnetic-field dependences of different moiré exciton resonances. Our study highlights the highly non-trivial exciton states that can emerge in transition metal dichalcogenide moiré superlattices, and suggests new ways of tuning many-body physics in moiré systems by engineering excited-states with specific spatial characters. By combining large-scale first-principles GW -BSE calculations and micro-reflection spectroscopy, the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices is identified, highlighting non-trivial exciton states and suggesting new ways of tuning many-body physics.
doi_str_mv 10.1038/s41586-022-04991-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2709018758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709765586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-4ccc49c31015dddc221d394784d070c29c044cce1caba9cb2dd121b850dca4293</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4GnBi5foJJvdJEcp_ikUvCgeQzpJ65btbk12xT6Sz-GLmXYFwYOnYWa-GX58hJwzuGKQq-soWKFKCpxTEFozqg_IiAlZUlEqeUhGAFxRUHl5TE5iXAFAwaQYkem06YKt7daHDF9tWHqa-iYuUr9uq_D1mfkPrLq2iVnVZO-2yVxavVhbxyz2Gx9q23UV-nhKjhZp6M9-6pg8390-TR7o7PF-OrmZUcwL3lGBiEJjzoAVzjnknLlcC6mEAwnINYJIjGdo51bjnDvHOJurAhxawXU-JpfD301o33ofO7OuIvq6to1v-2i4BA1MyUIl9OIPumr70KR0e0qWRZKWKD5QGNoYg1-YTajWNmwNA7Ozawa7Jtk1e7tmlyIfjmKCm6UPv6__ufoGnHt91Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709765586</pqid></control><display><type>article</type><title>Intralayer charge-transfer moiré excitons in van der Waals superlattices</title><source>SpringerLink Journals (MCLS)</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Naik, Mit H. ; Regan, Emma C. ; Zhang, Zuocheng ; Chan, Yang-Hao ; Li, Zhenglu ; Wang, Danqing ; Yoon, Yoseob ; Ong, Chin Shen ; Zhao, Wenyu ; Zhao, Sihan ; Utama, M. Iqbal Bakti ; Gao, Beini ; Wei, Xin ; Sayyad, Mohammed ; Yumigeta, Kentaro ; Watanabe, Kenji ; Taniguchi, Takashi ; Tongay, Sefaattin ; da Jornada, Felipe H. ; Wang, Feng ; Louie, Steven G.</creator><creatorcontrib>Naik, Mit H. ; Regan, Emma C. ; Zhang, Zuocheng ; Chan, Yang-Hao ; Li, Zhenglu ; Wang, Danqing ; Yoon, Yoseob ; Ong, Chin Shen ; Zhao, Wenyu ; Zhao, Sihan ; Utama, M. Iqbal Bakti ; Gao, Beini ; Wei, Xin ; Sayyad, Mohammed ; Yumigeta, Kentaro ; Watanabe, Kenji ; Taniguchi, Takashi ; Tongay, Sefaattin ; da Jornada, Felipe H. ; Wang, Feng ; Louie, Steven G.</creatorcontrib><description>Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established 1 – 4 through optical measurements, the microscopic nature of these states is still poorly understood, often relying on empirically fit models. Here, combining large-scale first-principles GW (where G and W denote the one-particle Green's function and the screened Coulomb interaction, respectively) plus Bethe–Salpeter calculations and micro-reflection spectroscopy, we identify the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices, discovering a rich set of moiré excitons that cannot be captured by prevailing continuum models. Our calculations show moiré excitons with distinct characters, including modulated Wannier excitons and previously unidentified intralayer charge-transfer excitons. Signatures of these distinct excitonic characters are confirmed experimentally by the unique carrier-density and magnetic-field dependences of different moiré exciton resonances. Our study highlights the highly non-trivial exciton states that can emerge in transition metal dichalcogenide moiré superlattices, and suggests new ways of tuning many-body physics in moiré systems by engineering excited-states with specific spatial characters. By combining large-scale first-principles GW -BSE calculations and micro-reflection spectroscopy, the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices is identified, highlighting non-trivial exciton states and suggesting new ways of tuning many-body physics.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04991-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034 ; 639/766/119/995 ; Carrier density ; Chalcogenides ; Charge transfer ; Continuum modeling ; Energy ; Excitons ; First principles ; Green's function ; Green's functions ; Humanities and Social Sciences ; Magnetism ; Moire patterns ; multidisciplinary ; Optical measurement ; Physics ; Science ; Science (multidisciplinary) ; Spectroscopy ; Spectrum analysis ; Superlattices ; Transition metal compounds</subject><ispartof>Nature (London), 2022-09, Vol.609 (7925), p.52-57</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>Copyright Nature Publishing Group Sep 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-4ccc49c31015dddc221d394784d070c29c044cce1caba9cb2dd121b850dca4293</citedby><cites>FETCH-LOGICAL-c352t-4ccc49c31015dddc221d394784d070c29c044cce1caba9cb2dd121b850dca4293</cites><orcidid>0000-0001-6712-7151 ; 0000-0002-1467-3105 ; 0000-0002-3851-9241 ; 0000-0001-8911-9830 ; 0000-0002-4544-4962 ; 0000-0001-8369-6194 ; 0000-0003-2162-734X ; 0000-0002-9100-6031 ; 0000-0001-7851-6101 ; 0000-0003-0622-0170 ; 0000-0002-8832-897X ; 0000-0002-4454-8348 ; 0000-0003-3701-8119 ; 0000-0001-8294-984X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-04991-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-04991-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Naik, Mit H.</creatorcontrib><creatorcontrib>Regan, Emma C.</creatorcontrib><creatorcontrib>Zhang, Zuocheng</creatorcontrib><creatorcontrib>Chan, Yang-Hao</creatorcontrib><creatorcontrib>Li, Zhenglu</creatorcontrib><creatorcontrib>Wang, Danqing</creatorcontrib><creatorcontrib>Yoon, Yoseob</creatorcontrib><creatorcontrib>Ong, Chin Shen</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Zhao, Sihan</creatorcontrib><creatorcontrib>Utama, M. Iqbal Bakti</creatorcontrib><creatorcontrib>Gao, Beini</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Sayyad, Mohammed</creatorcontrib><creatorcontrib>Yumigeta, Kentaro</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Tongay, Sefaattin</creatorcontrib><creatorcontrib>da Jornada, Felipe H.</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><title>Intralayer charge-transfer moiré excitons in van der Waals superlattices</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established 1 – 4 through optical measurements, the microscopic nature of these states is still poorly understood, often relying on empirically fit models. Here, combining large-scale first-principles GW (where G and W denote the one-particle Green's function and the screened Coulomb interaction, respectively) plus Bethe–Salpeter calculations and micro-reflection spectroscopy, we identify the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices, discovering a rich set of moiré excitons that cannot be captured by prevailing continuum models. Our calculations show moiré excitons with distinct characters, including modulated Wannier excitons and previously unidentified intralayer charge-transfer excitons. Signatures of these distinct excitonic characters are confirmed experimentally by the unique carrier-density and magnetic-field dependences of different moiré exciton resonances. Our study highlights the highly non-trivial exciton states that can emerge in transition metal dichalcogenide moiré superlattices, and suggests new ways of tuning many-body physics in moiré systems by engineering excited-states with specific spatial characters. By combining large-scale first-principles GW -BSE calculations and micro-reflection spectroscopy, the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices is identified, highlighting non-trivial exciton states and suggesting new ways of tuning many-body physics.</description><subject>639/301/1034</subject><subject>639/766/119/995</subject><subject>Carrier density</subject><subject>Chalcogenides</subject><subject>Charge transfer</subject><subject>Continuum modeling</subject><subject>Energy</subject><subject>Excitons</subject><subject>First principles</subject><subject>Green's function</subject><subject>Green's functions</subject><subject>Humanities and Social Sciences</subject><subject>Magnetism</subject><subject>Moire patterns</subject><subject>multidisciplinary</subject><subject>Optical measurement</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><subject>Transition metal compounds</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM9KAzEQh4MoWKsv4GnBi5foJJvdJEcp_ikUvCgeQzpJ65btbk12xT6Sz-GLmXYFwYOnYWa-GX58hJwzuGKQq-soWKFKCpxTEFozqg_IiAlZUlEqeUhGAFxRUHl5TE5iXAFAwaQYkem06YKt7daHDF9tWHqa-iYuUr9uq_D1mfkPrLq2iVnVZO-2yVxavVhbxyz2Gx9q23UV-nhKjhZp6M9-6pg8390-TR7o7PF-OrmZUcwL3lGBiEJjzoAVzjnknLlcC6mEAwnINYJIjGdo51bjnDvHOJurAhxawXU-JpfD301o33ofO7OuIvq6to1v-2i4BA1MyUIl9OIPumr70KR0e0qWRZKWKD5QGNoYg1-YTajWNmwNA7Ozawa7Jtk1e7tmlyIfjmKCm6UPv6__ufoGnHt91Q</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Naik, Mit H.</creator><creator>Regan, Emma C.</creator><creator>Zhang, Zuocheng</creator><creator>Chan, Yang-Hao</creator><creator>Li, Zhenglu</creator><creator>Wang, Danqing</creator><creator>Yoon, Yoseob</creator><creator>Ong, Chin Shen</creator><creator>Zhao, Wenyu</creator><creator>Zhao, Sihan</creator><creator>Utama, M. Iqbal Bakti</creator><creator>Gao, Beini</creator><creator>Wei, Xin</creator><creator>Sayyad, Mohammed</creator><creator>Yumigeta, Kentaro</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Tongay, Sefaattin</creator><creator>da Jornada, Felipe H.</creator><creator>Wang, Feng</creator><creator>Louie, Steven G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6712-7151</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-3851-9241</orcidid><orcidid>https://orcid.org/0000-0001-8911-9830</orcidid><orcidid>https://orcid.org/0000-0002-4544-4962</orcidid><orcidid>https://orcid.org/0000-0001-8369-6194</orcidid><orcidid>https://orcid.org/0000-0003-2162-734X</orcidid><orcidid>https://orcid.org/0000-0002-9100-6031</orcidid><orcidid>https://orcid.org/0000-0001-7851-6101</orcidid><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-8832-897X</orcidid><orcidid>https://orcid.org/0000-0002-4454-8348</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8294-984X</orcidid></search><sort><creationdate>20220901</creationdate><title>Intralayer charge-transfer moiré excitons in van der Waals superlattices</title><author>Naik, Mit H. ; Regan, Emma C. ; Zhang, Zuocheng ; Chan, Yang-Hao ; Li, Zhenglu ; Wang, Danqing ; Yoon, Yoseob ; Ong, Chin Shen ; Zhao, Wenyu ; Zhao, Sihan ; Utama, M. Iqbal Bakti ; Gao, Beini ; Wei, Xin ; Sayyad, Mohammed ; Yumigeta, Kentaro ; Watanabe, Kenji ; Taniguchi, Takashi ; Tongay, Sefaattin ; da Jornada, Felipe H. ; Wang, Feng ; Louie, Steven G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-4ccc49c31015dddc221d394784d070c29c044cce1caba9cb2dd121b850dca4293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1034</topic><topic>639/766/119/995</topic><topic>Carrier density</topic><topic>Chalcogenides</topic><topic>Charge transfer</topic><topic>Continuum modeling</topic><topic>Energy</topic><topic>Excitons</topic><topic>First principles</topic><topic>Green's function</topic><topic>Green's functions</topic><topic>Humanities and Social Sciences</topic><topic>Magnetism</topic><topic>Moire patterns</topic><topic>multidisciplinary</topic><topic>Optical measurement</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Mit H.</creatorcontrib><creatorcontrib>Regan, Emma C.</creatorcontrib><creatorcontrib>Zhang, Zuocheng</creatorcontrib><creatorcontrib>Chan, Yang-Hao</creatorcontrib><creatorcontrib>Li, Zhenglu</creatorcontrib><creatorcontrib>Wang, Danqing</creatorcontrib><creatorcontrib>Yoon, Yoseob</creatorcontrib><creatorcontrib>Ong, Chin Shen</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Zhao, Sihan</creatorcontrib><creatorcontrib>Utama, M. Iqbal Bakti</creatorcontrib><creatorcontrib>Gao, Beini</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Sayyad, Mohammed</creatorcontrib><creatorcontrib>Yumigeta, Kentaro</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Tongay, Sefaattin</creatorcontrib><creatorcontrib>da Jornada, Felipe H.</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Mit H.</au><au>Regan, Emma C.</au><au>Zhang, Zuocheng</au><au>Chan, Yang-Hao</au><au>Li, Zhenglu</au><au>Wang, Danqing</au><au>Yoon, Yoseob</au><au>Ong, Chin Shen</au><au>Zhao, Wenyu</au><au>Zhao, Sihan</au><au>Utama, M. Iqbal Bakti</au><au>Gao, Beini</au><au>Wei, Xin</au><au>Sayyad, Mohammed</au><au>Yumigeta, Kentaro</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Tongay, Sefaattin</au><au>da Jornada, Felipe H.</au><au>Wang, Feng</au><au>Louie, Steven G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intralayer charge-transfer moiré excitons in van der Waals superlattices</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>609</volume><issue>7925</issue><spage>52</spage><epage>57</epage><pages>52-57</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established 1 – 4 through optical measurements, the microscopic nature of these states is still poorly understood, often relying on empirically fit models. Here, combining large-scale first-principles GW (where G and W denote the one-particle Green's function and the screened Coulomb interaction, respectively) plus Bethe–Salpeter calculations and micro-reflection spectroscopy, we identify the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices, discovering a rich set of moiré excitons that cannot be captured by prevailing continuum models. Our calculations show moiré excitons with distinct characters, including modulated Wannier excitons and previously unidentified intralayer charge-transfer excitons. Signatures of these distinct excitonic characters are confirmed experimentally by the unique carrier-density and magnetic-field dependences of different moiré exciton resonances. Our study highlights the highly non-trivial exciton states that can emerge in transition metal dichalcogenide moiré superlattices, and suggests new ways of tuning many-body physics in moiré systems by engineering excited-states with specific spatial characters. By combining large-scale first-principles GW -BSE calculations and micro-reflection spectroscopy, the nature of the exciton resonances in WSe 2 /WS 2 moiré superlattices is identified, highlighting non-trivial exciton states and suggesting new ways of tuning many-body physics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-022-04991-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6712-7151</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-3851-9241</orcidid><orcidid>https://orcid.org/0000-0001-8911-9830</orcidid><orcidid>https://orcid.org/0000-0002-4544-4962</orcidid><orcidid>https://orcid.org/0000-0001-8369-6194</orcidid><orcidid>https://orcid.org/0000-0003-2162-734X</orcidid><orcidid>https://orcid.org/0000-0002-9100-6031</orcidid><orcidid>https://orcid.org/0000-0001-7851-6101</orcidid><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-8832-897X</orcidid><orcidid>https://orcid.org/0000-0002-4454-8348</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8294-984X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-09, Vol.609 (7925), p.52-57
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2709018758
source SpringerLink Journals (MCLS); Springer Nature - Connect here FIRST to enable access
subjects 639/301/1034
639/766/119/995
Carrier density
Chalcogenides
Charge transfer
Continuum modeling
Energy
Excitons
First principles
Green's function
Green's functions
Humanities and Social Sciences
Magnetism
Moire patterns
multidisciplinary
Optical measurement
Physics
Science
Science (multidisciplinary)
Spectroscopy
Spectrum analysis
Superlattices
Transition metal compounds
title Intralayer charge-transfer moiré excitons in van der Waals superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intralayer%20charge-transfer%20moir%C3%A9%20excitons%20in%20van%20der%20Waals%20superlattices&rft.jtitle=Nature%20(London)&rft.au=Naik,%20Mit%20H.&rft.date=2022-09-01&rft.volume=609&rft.issue=7925&rft.spage=52&rft.epage=57&rft.pages=52-57&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04991-9&rft_dat=%3Cproquest_cross%3E2709765586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709765586&rft_id=info:pmid/&rfr_iscdi=true