Epigenetics: An opportunity to shape innate and adaptive immune responses

Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post‐translational modifications and the regulation of chromatin accessibility by non‐coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunology 2022-12, Vol.167 (4), p.451-470
Hauptverfasser: Liotti, Antonietta, Ferrara, Anne Lise, Loffredo, Stefania, Galdiero, Maria Rosaria, Varricchi, Gilda, Di Rella, Francesca, Maniscalco, Giorgia Teresa, Belardo, Martina, Vastano, Roberta, Prencipe, Rosaria, Pignata, Laura, Romano, Roberta, Spadaro, Giuseppe, Candia, Paola, Pezone, Antonio, De Rosa, Veronica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 4
container_start_page 451
container_title Immunology
container_volume 167
creator Liotti, Antonietta
Ferrara, Anne Lise
Loffredo, Stefania
Galdiero, Maria Rosaria
Varricchi, Gilda
Di Rella, Francesca
Maniscalco, Giorgia Teresa
Belardo, Martina
Vastano, Roberta
Prencipe, Rosaria
Pignata, Laura
Romano, Roberta
Spadaro, Giuseppe
Candia, Paola
Pezone, Antonio
De Rosa, Veronica
description Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post‐translational modifications and the regulation of chromatin accessibility by non‐coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental‐driven nature, piloting myeloid and lymphoid cell fate decisions with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage‐specific transcription factors and maintenance of cell type‐specific epigenetic modifications, referred to as ‘epigenetic memory’, dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as ‘trained immunity’. Here, we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. External cues (e.g., environment, diet) and age converge on epigenetics that affects gene expression through specific DNA and histone modifications or non‐coding RNAs; this, together with genetic factors, tailors immune cell function. Through complex interactions with transcription factor networks and other transcriptional machinery, epigenetic modifications support the functional exchange between repressed and active states of chromatin to prime immune activation, transcriptional memory, innate immune training and tolerance.
doi_str_mv 10.1111/imm.13571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708736412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739570361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4281-58815ff171ca82a78fe144624aba72e8e7e0f22c24936a54ced5381da3140ffd3</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgipvTg19AAl70UJe_TeZtjKmDDS96Dln7VjPWtDatsm9vtNODYC4h4cfD-z4InVNyQ-MZu7K8oVwqeoCGlKcyYTJVh2hICJ0kTBM5QCchbOKTEymP0YCnRHBF5BAt5rV7AQ-ty8Itnnpc1XXVtJ137Q63FQ6vtgbsvLctYOtzbHNbt-49_pVl5wE3EOrKBwin6Kiw2wBn-3uEnu_mT7OHZPl4v5hNl0kmmKaJ1JrKoqCKZlYzq3QBVIiUCbu2ioEGBaRgLGNiwlMrRQa55JrmllNBiiLnI3TV59ZN9dZBaE3pQgbbrfVQdcEwRbTiqaAs0ss_dFN1jY_TRcUnUhGe0qiue5U1VQgNFKZuXGmbnaHEfPVr4qrmu99oL_aJ3bqE_Ff-FBrBuAcfbgu7_5PMYrXqIz8Bb2yDNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739570361</pqid></control><display><type>article</type><title>Epigenetics: An opportunity to shape innate and adaptive immune responses</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Liotti, Antonietta ; Ferrara, Anne Lise ; Loffredo, Stefania ; Galdiero, Maria Rosaria ; Varricchi, Gilda ; Di Rella, Francesca ; Maniscalco, Giorgia Teresa ; Belardo, Martina ; Vastano, Roberta ; Prencipe, Rosaria ; Pignata, Laura ; Romano, Roberta ; Spadaro, Giuseppe ; Candia, Paola ; Pezone, Antonio ; De Rosa, Veronica</creator><creatorcontrib>Liotti, Antonietta ; Ferrara, Anne Lise ; Loffredo, Stefania ; Galdiero, Maria Rosaria ; Varricchi, Gilda ; Di Rella, Francesca ; Maniscalco, Giorgia Teresa ; Belardo, Martina ; Vastano, Roberta ; Prencipe, Rosaria ; Pignata, Laura ; Romano, Roberta ; Spadaro, Giuseppe ; Candia, Paola ; Pezone, Antonio ; De Rosa, Veronica</creatorcontrib><description>Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post‐translational modifications and the regulation of chromatin accessibility by non‐coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental‐driven nature, piloting myeloid and lymphoid cell fate decisions with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage‐specific transcription factors and maintenance of cell type‐specific epigenetic modifications, referred to as ‘epigenetic memory’, dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as ‘trained immunity’. Here, we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. External cues (e.g., environment, diet) and age converge on epigenetics that affects gene expression through specific DNA and histone modifications or non‐coding RNAs; this, together with genetic factors, tailors immune cell function. Through complex interactions with transcription factor networks and other transcriptional machinery, epigenetic modifications support the functional exchange between repressed and active states of chromatin to prime immune activation, transcriptional memory, innate immune training and tolerance.</description><identifier>ISSN: 0019-2805</identifier><identifier>EISSN: 1365-2567</identifier><identifier>DOI: 10.1111/imm.13571</identifier><identifier>PMID: 36043705</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>adaptive immunity ; Antigens ; Autoimmune diseases ; autoimmunity ; Cell activation ; Cell differentiation ; Cell Differentiation - genetics ; Cell fate ; Chromatin ; Cytokines ; Differentiation (biology) ; DNA Methylation ; Environmental factors ; epidrugs ; Epigenesis, Genetic ; Epigenetics ; Foxp3 ; Histones ; Histones - metabolism ; Immune response ; Immune system ; Immunity ; Immunity, Innate ; Immunological memory ; Immunological tolerance ; Innate immunity ; Lymphocytes ; Lymphocytes T ; Maintenance ; Memory cells ; Plastic properties ; Plasticity ; Transcription factors ; Treg cell ; T‐cell differentiation</subject><ispartof>Immunology, 2022-12, Vol.167 (4), p.451-470</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Immunology published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4281-58815ff171ca82a78fe144624aba72e8e7e0f22c24936a54ced5381da3140ffd3</citedby><cites>FETCH-LOGICAL-c4281-58815ff171ca82a78fe144624aba72e8e7e0f22c24936a54ced5381da3140ffd3</cites><orcidid>0000-0002-9285-4657 ; 0000-0002-0068-6212 ; 0000-0002-8086-9130 ; 0000-0003-4767-446X ; 0000-0003-3271-4828 ; 0000-0002-9477-0991 ; 0000-0002-5871-1898 ; 0000-0003-1839-8873 ; 0000-0001-9433-3428 ; 0000-0001-8835-5567 ; 0000-0002-0679-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fimm.13571$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fimm.13571$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36043705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liotti, Antonietta</creatorcontrib><creatorcontrib>Ferrara, Anne Lise</creatorcontrib><creatorcontrib>Loffredo, Stefania</creatorcontrib><creatorcontrib>Galdiero, Maria Rosaria</creatorcontrib><creatorcontrib>Varricchi, Gilda</creatorcontrib><creatorcontrib>Di Rella, Francesca</creatorcontrib><creatorcontrib>Maniscalco, Giorgia Teresa</creatorcontrib><creatorcontrib>Belardo, Martina</creatorcontrib><creatorcontrib>Vastano, Roberta</creatorcontrib><creatorcontrib>Prencipe, Rosaria</creatorcontrib><creatorcontrib>Pignata, Laura</creatorcontrib><creatorcontrib>Romano, Roberta</creatorcontrib><creatorcontrib>Spadaro, Giuseppe</creatorcontrib><creatorcontrib>Candia, Paola</creatorcontrib><creatorcontrib>Pezone, Antonio</creatorcontrib><creatorcontrib>De Rosa, Veronica</creatorcontrib><title>Epigenetics: An opportunity to shape innate and adaptive immune responses</title><title>Immunology</title><addtitle>Immunology</addtitle><description>Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post‐translational modifications and the regulation of chromatin accessibility by non‐coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental‐driven nature, piloting myeloid and lymphoid cell fate decisions with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage‐specific transcription factors and maintenance of cell type‐specific epigenetic modifications, referred to as ‘epigenetic memory’, dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as ‘trained immunity’. Here, we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. External cues (e.g., environment, diet) and age converge on epigenetics that affects gene expression through specific DNA and histone modifications or non‐coding RNAs; this, together with genetic factors, tailors immune cell function. Through complex interactions with transcription factor networks and other transcriptional machinery, epigenetic modifications support the functional exchange between repressed and active states of chromatin to prime immune activation, transcriptional memory, innate immune training and tolerance.</description><subject>adaptive immunity</subject><subject>Antigens</subject><subject>Autoimmune diseases</subject><subject>autoimmunity</subject><subject>Cell activation</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Chromatin</subject><subject>Cytokines</subject><subject>Differentiation (biology)</subject><subject>DNA Methylation</subject><subject>Environmental factors</subject><subject>epidrugs</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Foxp3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunity, Innate</subject><subject>Immunological memory</subject><subject>Immunological tolerance</subject><subject>Innate immunity</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Maintenance</subject><subject>Memory cells</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Transcription factors</subject><subject>Treg cell</subject><subject>T‐cell differentiation</subject><issn>0019-2805</issn><issn>1365-2567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp10E9LwzAYBvAgipvTg19AAl70UJe_TeZtjKmDDS96Dln7VjPWtDatsm9vtNODYC4h4cfD-z4InVNyQ-MZu7K8oVwqeoCGlKcyYTJVh2hICJ0kTBM5QCchbOKTEymP0YCnRHBF5BAt5rV7AQ-ty8Itnnpc1XXVtJ137Q63FQ6vtgbsvLctYOtzbHNbt-49_pVl5wE3EOrKBwin6Kiw2wBn-3uEnu_mT7OHZPl4v5hNl0kmmKaJ1JrKoqCKZlYzq3QBVIiUCbu2ioEGBaRgLGNiwlMrRQa55JrmllNBiiLnI3TV59ZN9dZBaE3pQgbbrfVQdcEwRbTiqaAs0ss_dFN1jY_TRcUnUhGe0qiue5U1VQgNFKZuXGmbnaHEfPVr4qrmu99oL_aJ3bqE_Ff-FBrBuAcfbgu7_5PMYrXqIz8Bb2yDNA</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Liotti, Antonietta</creator><creator>Ferrara, Anne Lise</creator><creator>Loffredo, Stefania</creator><creator>Galdiero, Maria Rosaria</creator><creator>Varricchi, Gilda</creator><creator>Di Rella, Francesca</creator><creator>Maniscalco, Giorgia Teresa</creator><creator>Belardo, Martina</creator><creator>Vastano, Roberta</creator><creator>Prencipe, Rosaria</creator><creator>Pignata, Laura</creator><creator>Romano, Roberta</creator><creator>Spadaro, Giuseppe</creator><creator>Candia, Paola</creator><creator>Pezone, Antonio</creator><creator>De Rosa, Veronica</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T5</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9285-4657</orcidid><orcidid>https://orcid.org/0000-0002-0068-6212</orcidid><orcidid>https://orcid.org/0000-0002-8086-9130</orcidid><orcidid>https://orcid.org/0000-0003-4767-446X</orcidid><orcidid>https://orcid.org/0000-0003-3271-4828</orcidid><orcidid>https://orcid.org/0000-0002-9477-0991</orcidid><orcidid>https://orcid.org/0000-0002-5871-1898</orcidid><orcidid>https://orcid.org/0000-0003-1839-8873</orcidid><orcidid>https://orcid.org/0000-0001-9433-3428</orcidid><orcidid>https://orcid.org/0000-0001-8835-5567</orcidid><orcidid>https://orcid.org/0000-0002-0679-9939</orcidid></search><sort><creationdate>202212</creationdate><title>Epigenetics: An opportunity to shape innate and adaptive immune responses</title><author>Liotti, Antonietta ; Ferrara, Anne Lise ; Loffredo, Stefania ; Galdiero, Maria Rosaria ; Varricchi, Gilda ; Di Rella, Francesca ; Maniscalco, Giorgia Teresa ; Belardo, Martina ; Vastano, Roberta ; Prencipe, Rosaria ; Pignata, Laura ; Romano, Roberta ; Spadaro, Giuseppe ; Candia, Paola ; Pezone, Antonio ; De Rosa, Veronica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4281-58815ff171ca82a78fe144624aba72e8e7e0f22c24936a54ced5381da3140ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adaptive immunity</topic><topic>Antigens</topic><topic>Autoimmune diseases</topic><topic>autoimmunity</topic><topic>Cell activation</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Chromatin</topic><topic>Cytokines</topic><topic>Differentiation (biology)</topic><topic>DNA Methylation</topic><topic>Environmental factors</topic><topic>epidrugs</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Foxp3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunity, Innate</topic><topic>Immunological memory</topic><topic>Immunological tolerance</topic><topic>Innate immunity</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Maintenance</topic><topic>Memory cells</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Transcription factors</topic><topic>Treg cell</topic><topic>T‐cell differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liotti, Antonietta</creatorcontrib><creatorcontrib>Ferrara, Anne Lise</creatorcontrib><creatorcontrib>Loffredo, Stefania</creatorcontrib><creatorcontrib>Galdiero, Maria Rosaria</creatorcontrib><creatorcontrib>Varricchi, Gilda</creatorcontrib><creatorcontrib>Di Rella, Francesca</creatorcontrib><creatorcontrib>Maniscalco, Giorgia Teresa</creatorcontrib><creatorcontrib>Belardo, Martina</creatorcontrib><creatorcontrib>Vastano, Roberta</creatorcontrib><creatorcontrib>Prencipe, Rosaria</creatorcontrib><creatorcontrib>Pignata, Laura</creatorcontrib><creatorcontrib>Romano, Roberta</creatorcontrib><creatorcontrib>Spadaro, Giuseppe</creatorcontrib><creatorcontrib>Candia, Paola</creatorcontrib><creatorcontrib>Pezone, Antonio</creatorcontrib><creatorcontrib>De Rosa, Veronica</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liotti, Antonietta</au><au>Ferrara, Anne Lise</au><au>Loffredo, Stefania</au><au>Galdiero, Maria Rosaria</au><au>Varricchi, Gilda</au><au>Di Rella, Francesca</au><au>Maniscalco, Giorgia Teresa</au><au>Belardo, Martina</au><au>Vastano, Roberta</au><au>Prencipe, Rosaria</au><au>Pignata, Laura</au><au>Romano, Roberta</au><au>Spadaro, Giuseppe</au><au>Candia, Paola</au><au>Pezone, Antonio</au><au>De Rosa, Veronica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetics: An opportunity to shape innate and adaptive immune responses</atitle><jtitle>Immunology</jtitle><addtitle>Immunology</addtitle><date>2022-12</date><risdate>2022</risdate><volume>167</volume><issue>4</issue><spage>451</spage><epage>470</epage><pages>451-470</pages><issn>0019-2805</issn><eissn>1365-2567</eissn><abstract>Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post‐translational modifications and the regulation of chromatin accessibility by non‐coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental‐driven nature, piloting myeloid and lymphoid cell fate decisions with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage‐specific transcription factors and maintenance of cell type‐specific epigenetic modifications, referred to as ‘epigenetic memory’, dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as ‘trained immunity’. Here, we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. External cues (e.g., environment, diet) and age converge on epigenetics that affects gene expression through specific DNA and histone modifications or non‐coding RNAs; this, together with genetic factors, tailors immune cell function. Through complex interactions with transcription factor networks and other transcriptional machinery, epigenetic modifications support the functional exchange between repressed and active states of chromatin to prime immune activation, transcriptional memory, innate immune training and tolerance.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36043705</pmid><doi>10.1111/imm.13571</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9285-4657</orcidid><orcidid>https://orcid.org/0000-0002-0068-6212</orcidid><orcidid>https://orcid.org/0000-0002-8086-9130</orcidid><orcidid>https://orcid.org/0000-0003-4767-446X</orcidid><orcidid>https://orcid.org/0000-0003-3271-4828</orcidid><orcidid>https://orcid.org/0000-0002-9477-0991</orcidid><orcidid>https://orcid.org/0000-0002-5871-1898</orcidid><orcidid>https://orcid.org/0000-0003-1839-8873</orcidid><orcidid>https://orcid.org/0000-0001-9433-3428</orcidid><orcidid>https://orcid.org/0000-0001-8835-5567</orcidid><orcidid>https://orcid.org/0000-0002-0679-9939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-2805
ispartof Immunology, 2022-12, Vol.167 (4), p.451-470
issn 0019-2805
1365-2567
language eng
recordid cdi_proquest_miscellaneous_2708736412
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects adaptive immunity
Antigens
Autoimmune diseases
autoimmunity
Cell activation
Cell differentiation
Cell Differentiation - genetics
Cell fate
Chromatin
Cytokines
Differentiation (biology)
DNA Methylation
Environmental factors
epidrugs
Epigenesis, Genetic
Epigenetics
Foxp3
Histones
Histones - metabolism
Immune response
Immune system
Immunity
Immunity, Innate
Immunological memory
Immunological tolerance
Innate immunity
Lymphocytes
Lymphocytes T
Maintenance
Memory cells
Plastic properties
Plasticity
Transcription factors
Treg cell
T‐cell differentiation
title Epigenetics: An opportunity to shape innate and adaptive immune responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetics:%20An%20opportunity%20to%20shape%20innate%20and%20adaptive%20immune%20responses&rft.jtitle=Immunology&rft.au=Liotti,%20Antonietta&rft.date=2022-12&rft.volume=167&rft.issue=4&rft.spage=451&rft.epage=470&rft.pages=451-470&rft.issn=0019-2805&rft.eissn=1365-2567&rft_id=info:doi/10.1111/imm.13571&rft_dat=%3Cproquest_cross%3E2739570361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739570361&rft_id=info:pmid/36043705&rfr_iscdi=true