Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment

Formaldehyde (CH2O) measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the National Oceanic and Atmospheric Administration P‐3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 97). The data set cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060 107(D8):4060, 2002-04, Vol.107 (D8), p.ACH 3-1-ACH 3-12
Hauptverfasser: Frost, G. J., Fried, A., Lee, Y.-N., Wert, B., Henry, B., Drummond, J. R., Evans, M. J., Fehsenfeld, F. C., Goldan, P. D., Holloway, J. S., Hübler, G., Jakoubek, R., Jobson, B. T., Knapp, K., Kuster, W. C., Roberts, J., Rudolph, J., Ryerson, T. B., Stohl, A., Stroud, C., Sueper, D. T., Trainer, M., Williams, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ACH 3-12
container_issue D8
container_start_page ACH 3-1
container_title Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060
container_volume 107
creator Frost, G. J.
Fried, A.
Lee, Y.-N.
Wert, B.
Henry, B.
Drummond, J. R.
Evans, M. J.
Fehsenfeld, F. C.
Goldan, P. D.
Holloway, J. S.
Hübler, G.
Jakoubek, R.
Jobson, B. T.
Knapp, K.
Kuster, W. C.
Roberts, J.
Rudolph, J.
Ryerson, T. B.
Stohl, A.
Stroud, C.
Sueper, D. T.
Trainer, M.
Williams, J.
description Formaldehyde (CH2O) measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the National Oceanic and Atmospheric Administration P‐3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 97). The data set considered here consists of air masses sampled between 0 and 8 km over the North Atlantic Ocean which do not show recent influence from emissions or transport. These air masses therefore should be in photochemical steady state with respect to CH2O when constrained by the other P‐3 measurements, and methane oxidation was expected to be the predominant source of CH2O in these air masses. For this data set both instruments measured identical CH2O concentrations to within 40 parts per trillion by volume (pptv) on average over the 0–800 pptv range, although differences larger than the combined 2σ total uncertainty estimates were observed between the two instruments in 11% of the data. Both instruments produced higher CH2O concentrations than the model in more than 90% of this data set, with a median measured‐modeled [CH2O] difference of 0.13 or 0.18 ppbv (depending on the instrument), or about a factor of 2. Such large differences cannot be accounted for by varying model input parameters within their respective uncertainty ranges. After examining the possible reasons for the model‐measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH2O in the North Atlantic troposphere.
doi_str_mv 10.1029/2001JD000896
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27083289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27083289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5401-c1c48c7f5b5fed2c111121737c0268a9407703347a9824a177cb03786a60abda3</originalsourceid><addsrcrecordid>eNqFkUtvEzEURkcIJKLSHT_AEoIVA9ee8WtZpSVQSqmqIhAby_HcIYaZcWo7avLvcUgFrMAbL3y-4_uoqqcUXlFg-jUDoOenAKC0eFDNGOWiZgzYw2oGtFU1MCYfV8cpfS8MtFy0QGfV3TyMaxt9ClMioSfLsCVj6HAgzg5uM9js9y926siINm0ijjjlX2gf4miHDle7Dkkfw0jyCgnVWpLLEPOKnOTBTtk7co3fisUO5Gy7xuj3hifVo94OCY_v76Pq05uzm_nb-uLj4t385KJ2vNRXO-pa5WTPl7zHjjlaDqOykQ6YUFa3ICU0TSutVqy1VEq3hEYqYQXYZWebo-rZwRtS9iY5n9GtXJgmdNlQDhQEV4V6caDWMdxuMGUz-uRwKPVj2CTDJKiGKf1fkAraKK5kAV8eQBdDShF7sy6N27gzFMx-X-bvfRX8-b3XpjL4PtrJ-fQn0zZas3b_Pztwd37A3T-d5nxxfapB0xKqDyGfMm5_h2z8YUQZJTefLxeGf7l6_-GruDI3zU9SvbEz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16138587</pqid></control><display><type>article</type><title>Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Frost, G. J. ; Fried, A. ; Lee, Y.-N. ; Wert, B. ; Henry, B. ; Drummond, J. R. ; Evans, M. J. ; Fehsenfeld, F. C. ; Goldan, P. D. ; Holloway, J. S. ; Hübler, G. ; Jakoubek, R. ; Jobson, B. T. ; Knapp, K. ; Kuster, W. C. ; Roberts, J. ; Rudolph, J. ; Ryerson, T. B. ; Stohl, A. ; Stroud, C. ; Sueper, D. T. ; Trainer, M. ; Williams, J.</creator><creatorcontrib>Frost, G. J. ; Fried, A. ; Lee, Y.-N. ; Wert, B. ; Henry, B. ; Drummond, J. R. ; Evans, M. J. ; Fehsenfeld, F. C. ; Goldan, P. D. ; Holloway, J. S. ; Hübler, G. ; Jakoubek, R. ; Jobson, B. T. ; Knapp, K. ; Kuster, W. C. ; Roberts, J. ; Rudolph, J. ; Ryerson, T. B. ; Stohl, A. ; Stroud, C. ; Sueper, D. T. ; Trainer, M. ; Williams, J. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Formaldehyde (CH2O) measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the National Oceanic and Atmospheric Administration P‐3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 97). The data set considered here consists of air masses sampled between 0 and 8 km over the North Atlantic Ocean which do not show recent influence from emissions or transport. These air masses therefore should be in photochemical steady state with respect to CH2O when constrained by the other P‐3 measurements, and methane oxidation was expected to be the predominant source of CH2O in these air masses. For this data set both instruments measured identical CH2O concentrations to within 40 parts per trillion by volume (pptv) on average over the 0–800 pptv range, although differences larger than the combined 2σ total uncertainty estimates were observed between the two instruments in 11% of the data. Both instruments produced higher CH2O concentrations than the model in more than 90% of this data set, with a median measured‐modeled [CH2O] difference of 0.13 or 0.18 ppbv (depending on the instrument), or about a factor of 2. Such large differences cannot be accounted for by varying model input parameters within their respective uncertainty ranges. After examining the possible reasons for the model‐measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH2O in the North Atlantic troposphere.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2001JD000896</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aircraft measurements ; Chemical composition and interactions. Ionic interactions and processes ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; formaldehyde ; Geophysics. Techniques, methods, instrumentation and models ; Marine ; Meteorology ; North Atlantic troposphere ; photochemical modeling</subject><ispartof>Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060, 2002-04, Vol.107 (D8), p.ACH 3-1-ACH 3-12</ispartof><rights>Copyright 2002 by the American Geophysical Union.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5401-c1c48c7f5b5fed2c111121737c0268a9407703347a9824a177cb03786a60abda3</citedby><cites>FETCH-LOGICAL-c5401-c1c48c7f5b5fed2c111121737c0268a9407703347a9824a177cb03786a60abda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2001JD000896$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2001JD000896$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14399249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15010658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Frost, G. J.</creatorcontrib><creatorcontrib>Fried, A.</creatorcontrib><creatorcontrib>Lee, Y.-N.</creatorcontrib><creatorcontrib>Wert, B.</creatorcontrib><creatorcontrib>Henry, B.</creatorcontrib><creatorcontrib>Drummond, J. R.</creatorcontrib><creatorcontrib>Evans, M. J.</creatorcontrib><creatorcontrib>Fehsenfeld, F. C.</creatorcontrib><creatorcontrib>Goldan, P. D.</creatorcontrib><creatorcontrib>Holloway, J. S.</creatorcontrib><creatorcontrib>Hübler, G.</creatorcontrib><creatorcontrib>Jakoubek, R.</creatorcontrib><creatorcontrib>Jobson, B. T.</creatorcontrib><creatorcontrib>Knapp, K.</creatorcontrib><creatorcontrib>Kuster, W. C.</creatorcontrib><creatorcontrib>Roberts, J.</creatorcontrib><creatorcontrib>Rudolph, J.</creatorcontrib><creatorcontrib>Ryerson, T. B.</creatorcontrib><creatorcontrib>Stohl, A.</creatorcontrib><creatorcontrib>Stroud, C.</creatorcontrib><creatorcontrib>Sueper, D. T.</creatorcontrib><creatorcontrib>Trainer, M.</creatorcontrib><creatorcontrib>Williams, J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment</title><title>Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060</title><addtitle>J.-Geophys.-Res</addtitle><description>Formaldehyde (CH2O) measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the National Oceanic and Atmospheric Administration P‐3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 97). The data set considered here consists of air masses sampled between 0 and 8 km over the North Atlantic Ocean which do not show recent influence from emissions or transport. These air masses therefore should be in photochemical steady state with respect to CH2O when constrained by the other P‐3 measurements, and methane oxidation was expected to be the predominant source of CH2O in these air masses. For this data set both instruments measured identical CH2O concentrations to within 40 parts per trillion by volume (pptv) on average over the 0–800 pptv range, although differences larger than the combined 2σ total uncertainty estimates were observed between the two instruments in 11% of the data. Both instruments produced higher CH2O concentrations than the model in more than 90% of this data set, with a median measured‐modeled [CH2O] difference of 0.13 or 0.18 ppbv (depending on the instrument), or about a factor of 2. Such large differences cannot be accounted for by varying model input parameters within their respective uncertainty ranges. After examining the possible reasons for the model‐measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH2O in the North Atlantic troposphere.</description><subject>aircraft measurements</subject><subject>Chemical composition and interactions. Ionic interactions and processes</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>formaldehyde</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Marine</subject><subject>Meteorology</subject><subject>North Atlantic troposphere</subject><subject>photochemical modeling</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEURkcIJKLSHT_AEoIVA9ee8WtZpSVQSqmqIhAby_HcIYaZcWo7avLvcUgFrMAbL3y-4_uoqqcUXlFg-jUDoOenAKC0eFDNGOWiZgzYw2oGtFU1MCYfV8cpfS8MtFy0QGfV3TyMaxt9ClMioSfLsCVj6HAgzg5uM9js9y926siINm0ijjjlX2gf4miHDle7Dkkfw0jyCgnVWpLLEPOKnOTBTtk7co3fisUO5Gy7xuj3hifVo94OCY_v76Pq05uzm_nb-uLj4t385KJ2vNRXO-pa5WTPl7zHjjlaDqOykQ6YUFa3ICU0TSutVqy1VEq3hEYqYQXYZWebo-rZwRtS9iY5n9GtXJgmdNlQDhQEV4V6caDWMdxuMGUz-uRwKPVj2CTDJKiGKf1fkAraKK5kAV8eQBdDShF7sy6N27gzFMx-X-bvfRX8-b3XpjL4PtrJ-fQn0zZas3b_Pztwd37A3T-d5nxxfapB0xKqDyGfMm5_h2z8YUQZJTefLxeGf7l6_-GruDI3zU9SvbEz</recordid><startdate>20020427</startdate><enddate>20020427</enddate><creator>Frost, G. J.</creator><creator>Fried, A.</creator><creator>Lee, Y.-N.</creator><creator>Wert, B.</creator><creator>Henry, B.</creator><creator>Drummond, J. R.</creator><creator>Evans, M. J.</creator><creator>Fehsenfeld, F. C.</creator><creator>Goldan, P. D.</creator><creator>Holloway, J. S.</creator><creator>Hübler, G.</creator><creator>Jakoubek, R.</creator><creator>Jobson, B. T.</creator><creator>Knapp, K.</creator><creator>Kuster, W. C.</creator><creator>Roberts, J.</creator><creator>Rudolph, J.</creator><creator>Ryerson, T. B.</creator><creator>Stohl, A.</creator><creator>Stroud, C.</creator><creator>Sueper, D. T.</creator><creator>Trainer, M.</creator><creator>Williams, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7TV</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20020427</creationdate><title>Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment</title><author>Frost, G. J. ; Fried, A. ; Lee, Y.-N. ; Wert, B. ; Henry, B. ; Drummond, J. R. ; Evans, M. J. ; Fehsenfeld, F. C. ; Goldan, P. D. ; Holloway, J. S. ; Hübler, G. ; Jakoubek, R. ; Jobson, B. T. ; Knapp, K. ; Kuster, W. C. ; Roberts, J. ; Rudolph, J. ; Ryerson, T. B. ; Stohl, A. ; Stroud, C. ; Sueper, D. T. ; Trainer, M. ; Williams, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5401-c1c48c7f5b5fed2c111121737c0268a9407703347a9824a177cb03786a60abda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>aircraft measurements</topic><topic>Chemical composition and interactions. Ionic interactions and processes</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>formaldehyde</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Marine</topic><topic>Meteorology</topic><topic>North Atlantic troposphere</topic><topic>photochemical modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frost, G. J.</creatorcontrib><creatorcontrib>Fried, A.</creatorcontrib><creatorcontrib>Lee, Y.-N.</creatorcontrib><creatorcontrib>Wert, B.</creatorcontrib><creatorcontrib>Henry, B.</creatorcontrib><creatorcontrib>Drummond, J. R.</creatorcontrib><creatorcontrib>Evans, M. J.</creatorcontrib><creatorcontrib>Fehsenfeld, F. C.</creatorcontrib><creatorcontrib>Goldan, P. D.</creatorcontrib><creatorcontrib>Holloway, J. S.</creatorcontrib><creatorcontrib>Hübler, G.</creatorcontrib><creatorcontrib>Jakoubek, R.</creatorcontrib><creatorcontrib>Jobson, B. T.</creatorcontrib><creatorcontrib>Knapp, K.</creatorcontrib><creatorcontrib>Kuster, W. C.</creatorcontrib><creatorcontrib>Roberts, J.</creatorcontrib><creatorcontrib>Rudolph, J.</creatorcontrib><creatorcontrib>Ryerson, T. B.</creatorcontrib><creatorcontrib>Stohl, A.</creatorcontrib><creatorcontrib>Stroud, C.</creatorcontrib><creatorcontrib>Sueper, D. T.</creatorcontrib><creatorcontrib>Trainer, M.</creatorcontrib><creatorcontrib>Williams, J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frost, G. J.</au><au>Fried, A.</au><au>Lee, Y.-N.</au><au>Wert, B.</au><au>Henry, B.</au><au>Drummond, J. R.</au><au>Evans, M. J.</au><au>Fehsenfeld, F. C.</au><au>Goldan, P. D.</au><au>Holloway, J. S.</au><au>Hübler, G.</au><au>Jakoubek, R.</au><au>Jobson, B. T.</au><au>Knapp, K.</au><au>Kuster, W. C.</au><au>Roberts, J.</au><au>Rudolph, J.</au><au>Ryerson, T. B.</au><au>Stohl, A.</au><au>Stroud, C.</au><au>Sueper, D. T.</au><au>Trainer, M.</au><au>Williams, J.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment</atitle><jtitle>Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060</jtitle><addtitle>J.-Geophys.-Res</addtitle><date>2002-04-27</date><risdate>2002</risdate><volume>107</volume><issue>D8</issue><spage>ACH 3-1</spage><epage>ACH 3-12</epage><pages>ACH 3-1-ACH 3-12</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Formaldehyde (CH2O) measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the National Oceanic and Atmospheric Administration P‐3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 97). The data set considered here consists of air masses sampled between 0 and 8 km over the North Atlantic Ocean which do not show recent influence from emissions or transport. These air masses therefore should be in photochemical steady state with respect to CH2O when constrained by the other P‐3 measurements, and methane oxidation was expected to be the predominant source of CH2O in these air masses. For this data set both instruments measured identical CH2O concentrations to within 40 parts per trillion by volume (pptv) on average over the 0–800 pptv range, although differences larger than the combined 2σ total uncertainty estimates were observed between the two instruments in 11% of the data. Both instruments produced higher CH2O concentrations than the model in more than 90% of this data set, with a median measured‐modeled [CH2O] difference of 0.13 or 0.18 ppbv (depending on the instrument), or about a factor of 2. Such large differences cannot be accounted for by varying model input parameters within their respective uncertainty ranges. After examining the possible reasons for the model‐measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH2O in the North Atlantic troposphere.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2001JD000896</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. (Atmospheres), 107(D8):4060, 2002-04, Vol.107 (D8), p.ACH 3-1-ACH 3-12
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_27083289
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects aircraft measurements
Chemical composition and interactions. Ionic interactions and processes
Earth, ocean, space
Exact sciences and technology
External geophysics
formaldehyde
Geophysics. Techniques, methods, instrumentation and models
Marine
Meteorology
North Atlantic troposphere
photochemical modeling
title Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20of%20box%20model%20calculations%20and%20measurements%20of%20formaldehyde%20from%20the%201997%20North%20Atlantic%20Regional%20Experiment&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20(Atmospheres),%20107(D8):4060&rft.au=Frost,%20G.%20J.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2002-04-27&rft.volume=107&rft.issue=D8&rft.spage=ACH%203-1&rft.epage=ACH%203-12&rft.pages=ACH%203-1-ACH%203-12&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2001JD000896&rft_dat=%3Cproquest_osti_%3E27083289%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16138587&rft_id=info:pmid/&rfr_iscdi=true