Ultrathin Piezoelectric Resonators Based on Graphene and Free‐Standing Single‐Crystal BaTiO3
Suspended piezoelectric thin films are key elements enabling high‐frequency filtering in telecommunication devices. To meet the requirements of next‐generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high‐quality mechanical and ele...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-11, Vol.34 (44), p.e2204630-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | e2204630 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Lee, Martin Renshof, Johannes R. van Zeggeren, Kasper J. Houmes, Maurits J. A. Lesne, Edouard Šiškins, Makars van Thiel, Thierry C. Guis, Ruben H. van Blankenstein, Mark R. Verbiest, Gerard J. Caviglia, Andrea D. van der Zant, Herre S. J. Steeneken, Peter G. |
description | Suspended piezoelectric thin films are key elements enabling high‐frequency filtering in telecommunication devices. To meet the requirements of next‐generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high‐quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free‐standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q‐factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next‐generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.
Piezoelectric resonators are ubiquitous elements for frequency filtering in telecom devices. A piezoelectric resonator consisting of a suspended van der Waals heterostructure of ultrathin single‐crystal free‐standing BaTiO3 sandwiched between graphene sheets is reported. The heterostructure is piezoelectrically driven into a flexural motion and the resulting mechanics shows ferroelectric switching. The bulk‐mode resonance at 233 GHz is the highest reported. |
doi_str_mv | 10.1002/adma.202204630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708262044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731382119</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3060-21f1e45b04acd8e01bf749c5cd7f2713c684638e9a7767057415ee680754b3c33</originalsourceid><addsrcrecordid>eNpdkM1OwkAQgDdGExG9em7ixUtx9qe73SOioAkGI3CuSzuVktLW3RKDJx_BZ_RJXILh4GUmM_lmMvMRckmhRwHYjcnWpseAMRCSwxHp0IjRUICOjkkHNI9CLUV8Ss6cWwGAliA75HVetta0y6IKngv8rLHEtLVFGrygqyvT1tYFt8ZhFtRVMLKmWWKFgamyYGgRf76-p60viuotmPpQ7joDu3WtKf3YrJjwc3KSm9LhxV_ukvnwfjZ4CMeT0eOgPw4bDhJCRnOKIlqAMGkWI9BFroROozRTOVOUpzL2X8WojVJSQaQEjRBlDCoSC55y3iXX-72Nrd836NpkXbgUy9JUWG9cwhTETHo3wqNX_9BVvbGVv85TnPKYUao9pffUR1HiNmlssTZ2m1BIdraTne3kYDvp3z31DxX_Bagadik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731382119</pqid></control><display><type>article</type><title>Ultrathin Piezoelectric Resonators Based on Graphene and Free‐Standing Single‐Crystal BaTiO3</title><source>Wiley-Blackwell Journals</source><creator>Lee, Martin ; Renshof, Johannes R. ; van Zeggeren, Kasper J. ; Houmes, Maurits J. A. ; Lesne, Edouard ; Šiškins, Makars ; van Thiel, Thierry C. ; Guis, Ruben H. ; van Blankenstein, Mark R. ; Verbiest, Gerard J. ; Caviglia, Andrea D. ; van der Zant, Herre S. J. ; Steeneken, Peter G.</creator><creatorcontrib>Lee, Martin ; Renshof, Johannes R. ; van Zeggeren, Kasper J. ; Houmes, Maurits J. A. ; Lesne, Edouard ; Šiškins, Makars ; van Thiel, Thierry C. ; Guis, Ruben H. ; van Blankenstein, Mark R. ; Verbiest, Gerard J. ; Caviglia, Andrea D. ; van der Zant, Herre S. J. ; Steeneken, Peter G.</creatorcontrib><description>Suspended piezoelectric thin films are key elements enabling high‐frequency filtering in telecommunication devices. To meet the requirements of next‐generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high‐quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free‐standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q‐factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next‐generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.
Piezoelectric resonators are ubiquitous elements for frequency filtering in telecom devices. A piezoelectric resonator consisting of a suspended van der Waals heterostructure of ultrathin single‐crystal free‐standing BaTiO3 sandwiched between graphene sheets is reported. The heterostructure is piezoelectrically driven into a flexural motion and the resulting mechanics shows ferroelectric switching. The bulk‐mode resonance at 233 GHz is the highest reported.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202204630</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Actuation ; actuators ; Barium titanates ; complex oxides ; Electrical properties ; Electrodes ; Electronics ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Graphene ; Materials science ; Membranes ; nano‐electromechanical systems ; Piezoelectricity ; piezoelectrics ; Reconfiguration ; Resonance ; Resonators ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2022-11, Vol.34 (44), p.e2204630-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5764-1218 ; 0000-0002-1712-1234 ; 0000-0003-1147-233X ; 0000-0001-5415-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202204630$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202204630$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Lee, Martin</creatorcontrib><creatorcontrib>Renshof, Johannes R.</creatorcontrib><creatorcontrib>van Zeggeren, Kasper J.</creatorcontrib><creatorcontrib>Houmes, Maurits J. A.</creatorcontrib><creatorcontrib>Lesne, Edouard</creatorcontrib><creatorcontrib>Šiškins, Makars</creatorcontrib><creatorcontrib>van Thiel, Thierry C.</creatorcontrib><creatorcontrib>Guis, Ruben H.</creatorcontrib><creatorcontrib>van Blankenstein, Mark R.</creatorcontrib><creatorcontrib>Verbiest, Gerard J.</creatorcontrib><creatorcontrib>Caviglia, Andrea D.</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><creatorcontrib>Steeneken, Peter G.</creatorcontrib><title>Ultrathin Piezoelectric Resonators Based on Graphene and Free‐Standing Single‐Crystal BaTiO3</title><title>Advanced materials (Weinheim)</title><description>Suspended piezoelectric thin films are key elements enabling high‐frequency filtering in telecommunication devices. To meet the requirements of next‐generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high‐quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free‐standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q‐factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next‐generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.
Piezoelectric resonators are ubiquitous elements for frequency filtering in telecom devices. A piezoelectric resonator consisting of a suspended van der Waals heterostructure of ultrathin single‐crystal free‐standing BaTiO3 sandwiched between graphene sheets is reported. The heterostructure is piezoelectrically driven into a flexural motion and the resulting mechanics shows ferroelectric switching. The bulk‐mode resonance at 233 GHz is the highest reported.</description><subject>2D materials</subject><subject>Actuation</subject><subject>actuators</subject><subject>Barium titanates</subject><subject>complex oxides</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Membranes</subject><subject>nano‐electromechanical systems</subject><subject>Piezoelectricity</subject><subject>piezoelectrics</subject><subject>Reconfiguration</subject><subject>Resonance</subject><subject>Resonators</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkM1OwkAQgDdGExG9em7ixUtx9qe73SOioAkGI3CuSzuVktLW3RKDJx_BZ_RJXILh4GUmM_lmMvMRckmhRwHYjcnWpseAMRCSwxHp0IjRUICOjkkHNI9CLUV8Ss6cWwGAliA75HVetta0y6IKngv8rLHEtLVFGrygqyvT1tYFt8ZhFtRVMLKmWWKFgamyYGgRf76-p60viuotmPpQ7joDu3WtKf3YrJjwc3KSm9LhxV_ukvnwfjZ4CMeT0eOgPw4bDhJCRnOKIlqAMGkWI9BFroROozRTOVOUpzL2X8WojVJSQaQEjRBlDCoSC55y3iXX-72Nrd836NpkXbgUy9JUWG9cwhTETHo3wqNX_9BVvbGVv85TnPKYUao9pffUR1HiNmlssTZ2m1BIdraTne3kYDvp3z31DxX_Bagadik</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Lee, Martin</creator><creator>Renshof, Johannes R.</creator><creator>van Zeggeren, Kasper J.</creator><creator>Houmes, Maurits J. A.</creator><creator>Lesne, Edouard</creator><creator>Šiškins, Makars</creator><creator>van Thiel, Thierry C.</creator><creator>Guis, Ruben H.</creator><creator>van Blankenstein, Mark R.</creator><creator>Verbiest, Gerard J.</creator><creator>Caviglia, Andrea D.</creator><creator>van der Zant, Herre S. J.</creator><creator>Steeneken, Peter G.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5764-1218</orcidid><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><orcidid>https://orcid.org/0000-0003-1147-233X</orcidid><orcidid>https://orcid.org/0000-0001-5415-9007</orcidid></search><sort><creationdate>20221101</creationdate><title>Ultrathin Piezoelectric Resonators Based on Graphene and Free‐Standing Single‐Crystal BaTiO3</title><author>Lee, Martin ; Renshof, Johannes R. ; van Zeggeren, Kasper J. ; Houmes, Maurits J. A. ; Lesne, Edouard ; Šiškins, Makars ; van Thiel, Thierry C. ; Guis, Ruben H. ; van Blankenstein, Mark R. ; Verbiest, Gerard J. ; Caviglia, Andrea D. ; van der Zant, Herre S. J. ; Steeneken, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3060-21f1e45b04acd8e01bf749c5cd7f2713c684638e9a7767057415ee680754b3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>Actuation</topic><topic>actuators</topic><topic>Barium titanates</topic><topic>complex oxides</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Membranes</topic><topic>nano‐electromechanical systems</topic><topic>Piezoelectricity</topic><topic>piezoelectrics</topic><topic>Reconfiguration</topic><topic>Resonance</topic><topic>Resonators</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Martin</creatorcontrib><creatorcontrib>Renshof, Johannes R.</creatorcontrib><creatorcontrib>van Zeggeren, Kasper J.</creatorcontrib><creatorcontrib>Houmes, Maurits J. A.</creatorcontrib><creatorcontrib>Lesne, Edouard</creatorcontrib><creatorcontrib>Šiškins, Makars</creatorcontrib><creatorcontrib>van Thiel, Thierry C.</creatorcontrib><creatorcontrib>Guis, Ruben H.</creatorcontrib><creatorcontrib>van Blankenstein, Mark R.</creatorcontrib><creatorcontrib>Verbiest, Gerard J.</creatorcontrib><creatorcontrib>Caviglia, Andrea D.</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><creatorcontrib>Steeneken, Peter G.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Martin</au><au>Renshof, Johannes R.</au><au>van Zeggeren, Kasper J.</au><au>Houmes, Maurits J. A.</au><au>Lesne, Edouard</au><au>Šiškins, Makars</au><au>van Thiel, Thierry C.</au><au>Guis, Ruben H.</au><au>van Blankenstein, Mark R.</au><au>Verbiest, Gerard J.</au><au>Caviglia, Andrea D.</au><au>van der Zant, Herre S. J.</au><au>Steeneken, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Piezoelectric Resonators Based on Graphene and Free‐Standing Single‐Crystal BaTiO3</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>44</issue><spage>e2204630</spage><epage>n/a</epage><pages>e2204630-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Suspended piezoelectric thin films are key elements enabling high‐frequency filtering in telecommunication devices. To meet the requirements of next‐generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high‐quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free‐standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q‐factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next‐generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.
Piezoelectric resonators are ubiquitous elements for frequency filtering in telecom devices. A piezoelectric resonator consisting of a suspended van der Waals heterostructure of ultrathin single‐crystal free‐standing BaTiO3 sandwiched between graphene sheets is reported. The heterostructure is piezoelectrically driven into a flexural motion and the resulting mechanics shows ferroelectric switching. The bulk‐mode resonance at 233 GHz is the highest reported.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202204630</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5764-1218</orcidid><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><orcidid>https://orcid.org/0000-0003-1147-233X</orcidid><orcidid>https://orcid.org/0000-0001-5415-9007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-11, Vol.34 (44), p.e2204630-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2708262044 |
source | Wiley-Blackwell Journals |
subjects | 2D materials Actuation actuators Barium titanates complex oxides Electrical properties Electrodes Electronics Ferroelectric materials Ferroelectricity ferroelectrics Graphene Materials science Membranes nano‐electromechanical systems Piezoelectricity piezoelectrics Reconfiguration Resonance Resonators Thin films |
title | Ultrathin Piezoelectric Resonators Based on Graphene and Free‐Standing Single‐Crystal BaTiO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T17%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Piezoelectric%20Resonators%20Based%20on%20Graphene%20and%20Free%E2%80%90Standing%20Single%E2%80%90Crystal%20BaTiO3&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lee,%20Martin&rft.date=2022-11-01&rft.volume=34&rft.issue=44&rft.spage=e2204630&rft.epage=n/a&rft.pages=e2204630-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202204630&rft_dat=%3Cproquest_wiley%3E2731382119%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731382119&rft_id=info:pmid/&rfr_iscdi=true |