Prediction of exhaled carbon dioxide concentration using a computer‐simulated person that included alveolar gas exchange

Accurate prediction of inhaled CO2 concentration and alveolar gas exchange efficiency would improve the prediction of CO2 concentrations around the human body, which is essential for advanced ventilation design in buildings. We therefore, developed a computer‐simulated person (CSP) that included a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2022-08, Vol.32 (8), p.e13079-n/a
Hauptverfasser: Kuga, Kazuki, Sakamoto, Mitsuharu, Wargocki, Pawel, Ito, Kazuhide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e13079
container_title Indoor air
container_volume 32
creator Kuga, Kazuki
Sakamoto, Mitsuharu
Wargocki, Pawel
Ito, Kazuhide
description Accurate prediction of inhaled CO2 concentration and alveolar gas exchange efficiency would improve the prediction of CO2 concentrations around the human body, which is essential for advanced ventilation design in buildings. We therefore, developed a computer‐simulated person (CSP) that included a computational fluid dynamics approach. The CSP simulates metabolic heat production at the skin surface and carbon dioxide (CO2) gas exchange at the alveoli during the transient breathing cycle. This makes it possible to predict the CO2 distribution around the human body. The numerical model of the CO2 gas exchange mechanism includes both the upper and lower airways and makes it possible to calculate the alveolar CO2 partial pressure; this improves the prediction accuracy. We used the CSP to predict emission rates of metabolically generated CO2 exhaled by a person and assumed that the tidal volume will be unconsciously reduced as a result of exposure to poor indoor air quality. A reduction in tidal volume resulted in a decrease in CO2 emission rates of the same magnitude as was observed in our published experimental data. We also observed that the predicted inhaled CO2 concentration depended on the flow pattern around the human body, as would be expected.
doi_str_mv 10.1111/ina.13079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708260452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707856585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3659-837c2088fb756ce8a10ec02de99d1c6b9d74772ffdfda6f6f6da4f36897b1ea73</originalsourceid><addsrcrecordid>eNp10ctOGzEUBmCrAqnhsuANRmLTLgbsmYwvyyhqAQm1XbTr0Rn7ODFy7GDPlNAVj9Bn5EkwpKtK2AtLv75jW_oJOWP0gpV16QJcsJYK9YHMGKe0ppzLAzKjinY1V3PxkRzlfEcpE61qZ-TPj4TG6dHFUEVb4W4NHk2lIQ0lMS7unMFKx6AxjAne3JRdWFVQ0s12GjE9P_3NbjN5GMvkFlMuZlzDWLmg_WRKCP43Rg-pWkEub-g1hBWekEMLPuPpv_OY_Pr65efyur79fnWzXNzWuuWdqmUrdEOltIPouEYJjKKmjUGlDNN8UEbMhWisNdYAt2UbmNuWSyUGhiDaY_Jpf-82xfsJ89hvXNboPQSMU-4bQWXD6bxrCj3_j97FKYXyu1clZMc72RX1ea90ijkntP02uQ2kx57R_rWFvrTQv7VQ7OXePjiPj-_D_ubbYj_xAla9jIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707856585</pqid></control><display><type>article</type><title>Prediction of exhaled carbon dioxide concentration using a computer‐simulated person that included alveolar gas exchange</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kuga, Kazuki ; Sakamoto, Mitsuharu ; Wargocki, Pawel ; Ito, Kazuhide</creator><creatorcontrib>Kuga, Kazuki ; Sakamoto, Mitsuharu ; Wargocki, Pawel ; Ito, Kazuhide</creatorcontrib><description>Accurate prediction of inhaled CO2 concentration and alveolar gas exchange efficiency would improve the prediction of CO2 concentrations around the human body, which is essential for advanced ventilation design in buildings. We therefore, developed a computer‐simulated person (CSP) that included a computational fluid dynamics approach. The CSP simulates metabolic heat production at the skin surface and carbon dioxide (CO2) gas exchange at the alveoli during the transient breathing cycle. This makes it possible to predict the CO2 distribution around the human body. The numerical model of the CO2 gas exchange mechanism includes both the upper and lower airways and makes it possible to calculate the alveolar CO2 partial pressure; this improves the prediction accuracy. We used the CSP to predict emission rates of metabolically generated CO2 exhaled by a person and assumed that the tidal volume will be unconsciously reduced as a result of exposure to poor indoor air quality. A reduction in tidal volume resulted in a decrease in CO2 emission rates of the same magnitude as was observed in our published experimental data. We also observed that the predicted inhaled CO2 concentration depended on the flow pattern around the human body, as would be expected.</description><identifier>ISSN: 0905-6947</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.13079</identifier><language>eng</language><publisher>Malden: Hindawi Limited</publisher><subject>Air quality ; Alveoli ; Building design ; Carbon dioxide ; Carbon dioxide concentration ; Carbon dioxide emissions ; CO2 emission rate ; Computational fluid dynamics ; Computer applications ; computer simulated person ; Emissions ; Flow distribution ; Fluid dynamics ; Gas exchange ; gas exchange model ; Human body ; Hydrodynamics ; Indoor air pollution ; Indoor air quality ; Indoor environments ; Mathematical models ; numerical airway ; Numerical models ; Partial pressure ; Predictions ; Simulation</subject><ispartof>Indoor air, 2022-08, Vol.32 (8), p.e13079-n/a</ispartof><rights>2022 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2022 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3659-837c2088fb756ce8a10ec02de99d1c6b9d74772ffdfda6f6f6da4f36897b1ea73</citedby><cites>FETCH-LOGICAL-c3659-837c2088fb756ce8a10ec02de99d1c6b9d74772ffdfda6f6f6da4f36897b1ea73</cites><orcidid>0000-0001-9620-3184 ; 0000-0003-3865-3560 ; 0000-0002-7715-7896 ; 0000-0002-6553-6936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.13079$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.13079$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kuga, Kazuki</creatorcontrib><creatorcontrib>Sakamoto, Mitsuharu</creatorcontrib><creatorcontrib>Wargocki, Pawel</creatorcontrib><creatorcontrib>Ito, Kazuhide</creatorcontrib><title>Prediction of exhaled carbon dioxide concentration using a computer‐simulated person that included alveolar gas exchange</title><title>Indoor air</title><description>Accurate prediction of inhaled CO2 concentration and alveolar gas exchange efficiency would improve the prediction of CO2 concentrations around the human body, which is essential for advanced ventilation design in buildings. We therefore, developed a computer‐simulated person (CSP) that included a computational fluid dynamics approach. The CSP simulates metabolic heat production at the skin surface and carbon dioxide (CO2) gas exchange at the alveoli during the transient breathing cycle. This makes it possible to predict the CO2 distribution around the human body. The numerical model of the CO2 gas exchange mechanism includes both the upper and lower airways and makes it possible to calculate the alveolar CO2 partial pressure; this improves the prediction accuracy. We used the CSP to predict emission rates of metabolically generated CO2 exhaled by a person and assumed that the tidal volume will be unconsciously reduced as a result of exposure to poor indoor air quality. A reduction in tidal volume resulted in a decrease in CO2 emission rates of the same magnitude as was observed in our published experimental data. We also observed that the predicted inhaled CO2 concentration depended on the flow pattern around the human body, as would be expected.</description><subject>Air quality</subject><subject>Alveoli</subject><subject>Building design</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon dioxide emissions</subject><subject>CO2 emission rate</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>computer simulated person</subject><subject>Emissions</subject><subject>Flow distribution</subject><subject>Fluid dynamics</subject><subject>Gas exchange</subject><subject>gas exchange model</subject><subject>Human body</subject><subject>Hydrodynamics</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>Mathematical models</subject><subject>numerical airway</subject><subject>Numerical models</subject><subject>Partial pressure</subject><subject>Predictions</subject><subject>Simulation</subject><issn>0905-6947</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10ctOGzEUBmCrAqnhsuANRmLTLgbsmYwvyyhqAQm1XbTr0Rn7ODFy7GDPlNAVj9Bn5EkwpKtK2AtLv75jW_oJOWP0gpV16QJcsJYK9YHMGKe0ppzLAzKjinY1V3PxkRzlfEcpE61qZ-TPj4TG6dHFUEVb4W4NHk2lIQ0lMS7unMFKx6AxjAne3JRdWFVQ0s12GjE9P_3NbjN5GMvkFlMuZlzDWLmg_WRKCP43Rg-pWkEub-g1hBWekEMLPuPpv_OY_Pr65efyur79fnWzXNzWuuWdqmUrdEOltIPouEYJjKKmjUGlDNN8UEbMhWisNdYAt2UbmNuWSyUGhiDaY_Jpf-82xfsJ89hvXNboPQSMU-4bQWXD6bxrCj3_j97FKYXyu1clZMc72RX1ea90ijkntP02uQ2kx57R_rWFvrTQv7VQ7OXePjiPj-_D_ubbYj_xAla9jIE</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Kuga, Kazuki</creator><creator>Sakamoto, Mitsuharu</creator><creator>Wargocki, Pawel</creator><creator>Ito, Kazuhide</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9620-3184</orcidid><orcidid>https://orcid.org/0000-0003-3865-3560</orcidid><orcidid>https://orcid.org/0000-0002-7715-7896</orcidid><orcidid>https://orcid.org/0000-0002-6553-6936</orcidid></search><sort><creationdate>202208</creationdate><title>Prediction of exhaled carbon dioxide concentration using a computer‐simulated person that included alveolar gas exchange</title><author>Kuga, Kazuki ; Sakamoto, Mitsuharu ; Wargocki, Pawel ; Ito, Kazuhide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3659-837c2088fb756ce8a10ec02de99d1c6b9d74772ffdfda6f6f6da4f36897b1ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air quality</topic><topic>Alveoli</topic><topic>Building design</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon dioxide emissions</topic><topic>CO2 emission rate</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>computer simulated person</topic><topic>Emissions</topic><topic>Flow distribution</topic><topic>Fluid dynamics</topic><topic>Gas exchange</topic><topic>gas exchange model</topic><topic>Human body</topic><topic>Hydrodynamics</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>Mathematical models</topic><topic>numerical airway</topic><topic>Numerical models</topic><topic>Partial pressure</topic><topic>Predictions</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuga, Kazuki</creatorcontrib><creatorcontrib>Sakamoto, Mitsuharu</creatorcontrib><creatorcontrib>Wargocki, Pawel</creatorcontrib><creatorcontrib>Ito, Kazuhide</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuga, Kazuki</au><au>Sakamoto, Mitsuharu</au><au>Wargocki, Pawel</au><au>Ito, Kazuhide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of exhaled carbon dioxide concentration using a computer‐simulated person that included alveolar gas exchange</atitle><jtitle>Indoor air</jtitle><date>2022-08</date><risdate>2022</risdate><volume>32</volume><issue>8</issue><spage>e13079</spage><epage>n/a</epage><pages>e13079-n/a</pages><issn>0905-6947</issn><eissn>1600-0668</eissn><abstract>Accurate prediction of inhaled CO2 concentration and alveolar gas exchange efficiency would improve the prediction of CO2 concentrations around the human body, which is essential for advanced ventilation design in buildings. We therefore, developed a computer‐simulated person (CSP) that included a computational fluid dynamics approach. The CSP simulates metabolic heat production at the skin surface and carbon dioxide (CO2) gas exchange at the alveoli during the transient breathing cycle. This makes it possible to predict the CO2 distribution around the human body. The numerical model of the CO2 gas exchange mechanism includes both the upper and lower airways and makes it possible to calculate the alveolar CO2 partial pressure; this improves the prediction accuracy. We used the CSP to predict emission rates of metabolically generated CO2 exhaled by a person and assumed that the tidal volume will be unconsciously reduced as a result of exposure to poor indoor air quality. A reduction in tidal volume resulted in a decrease in CO2 emission rates of the same magnitude as was observed in our published experimental data. We also observed that the predicted inhaled CO2 concentration depended on the flow pattern around the human body, as would be expected.</abstract><cop>Malden</cop><pub>Hindawi Limited</pub><doi>10.1111/ina.13079</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9620-3184</orcidid><orcidid>https://orcid.org/0000-0003-3865-3560</orcidid><orcidid>https://orcid.org/0000-0002-7715-7896</orcidid><orcidid>https://orcid.org/0000-0002-6553-6936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6947
ispartof Indoor air, 2022-08, Vol.32 (8), p.e13079-n/a
issn 0905-6947
1600-0668
language eng
recordid cdi_proquest_miscellaneous_2708260452
source Wiley Online Library Journals Frontfile Complete
subjects Air quality
Alveoli
Building design
Carbon dioxide
Carbon dioxide concentration
Carbon dioxide emissions
CO2 emission rate
Computational fluid dynamics
Computer applications
computer simulated person
Emissions
Flow distribution
Fluid dynamics
Gas exchange
gas exchange model
Human body
Hydrodynamics
Indoor air pollution
Indoor air quality
Indoor environments
Mathematical models
numerical airway
Numerical models
Partial pressure
Predictions
Simulation
title Prediction of exhaled carbon dioxide concentration using a computer‐simulated person that included alveolar gas exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20exhaled%20carbon%20dioxide%20concentration%20using%20a%20computer%E2%80%90simulated%20person%20that%20included%20alveolar%20gas%20exchange&rft.jtitle=Indoor%20air&rft.au=Kuga,%20Kazuki&rft.date=2022-08&rft.volume=32&rft.issue=8&rft.spage=e13079&rft.epage=n/a&rft.pages=e13079-n/a&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.13079&rft_dat=%3Cproquest_cross%3E2707856585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707856585&rft_id=info:pmid/&rfr_iscdi=true