Experimental validation of a computational fluid dynamics model using micro‐particle image velocimetry of the irrigation flow in confluent canals

Aim This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro‐particle image velocimetry (micro‐PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side‐vented needle. Methodology A microchip with co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International endodontic journal 2022-12, Vol.55 (12), p.1394-1403
Hauptverfasser: Rito Pereira, Mário, Silva, Goncalo, Semiao, Viriato, Silverio, Vania, Martins, Jorge N. R., Pascoal‐Faria, Paula, Alves, Nuno, Dias, Juliana R., Ginjeira, António
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1403
container_issue 12
container_start_page 1394
container_title International endodontic journal
container_volume 55
creator Rito Pereira, Mário
Silva, Goncalo
Semiao, Viriato
Silverio, Vania
Martins, Jorge N. R.
Pascoal‐Faria, Paula
Alves, Nuno
Dias, Juliana R.
Ginjeira, António
description Aim This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro‐particle image velocimetry (micro‐PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side‐vented needle. Methodology A microchip with confluent canals, manufactured in polydimethylsiloxane was used in a micro‐PIV analysis of the irrigation flow using a side‐vented needle placed 3 mm from the end of the confluence of the canals. Velocity fields and profiles were recorded for flow rates of 0.017 and 0.1 ml/s and compared with those predicted in CFD numerical simulations (using a finite volume commercial code – FLUENT) for both laminar and turbulent regimes. Results The overall flow pattern, isovelocity and vector maps as well as velocity profiles showed a close agreement between the micro‐PIV experimental and CFD predicted data. No relevant differences were observed between the results obtained with the laminar and turbulent flow models used. Conclusions Results showed that the laminar CFD modelling is reliable to predict the flow in similar domains.
doi_str_mv 10.1111/iej.13827
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708260410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708260410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3927-beed794a368f8e76de96746a056999ac4202401696b50ae3f419e0fef1a315533</originalsourceid><addsrcrecordid>eNp1kc1KxTAQhYMoeP1Z-AYBN7qoJk2bNkuR6x-CG12X2E6uuaRNTVr17nwEwTf0SZxrXQlmMzDz5ZxhDiEHnJ1wfKcWlidclGmxQWZcyDxJc8U3yYzxTCRpWebbZCfGJWMsZ4LPyOf8rYdgW-gG7eiLdrbRg_Ud9YZqWvu2H4efBk6NG21Dm1WnW1tH2voGHB2j7RYUG8F_vX_0Ogy2dkBtqxdAX8D5GsWHsFoLDk84CMEuJgvj_Cu1Hbp0KI0b0FqjT9wjWwYL7P_WXfJwMb8_v0pu7y6vz89uk1qotEgeAZpCZVrI0pRQyAaULDKpWS6VUrrOUpZmjEslH3OmQZiMK2AGDNeC57kQu-Ro0u2Dfx4hDlVrYw3O6Q78GKu0YGUqWcYZood_0KUfw3pZpES2RrhE6nii8BgxBjBVj6fVYVVxVq3jqTCe6iceZE8n9tU6WP0PVtfzm-nHN-BelIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734410316</pqid></control><display><type>article</type><title>Experimental validation of a computational fluid dynamics model using micro‐particle image velocimetry of the irrigation flow in confluent canals</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Rito Pereira, Mário ; Silva, Goncalo ; Semiao, Viriato ; Silverio, Vania ; Martins, Jorge N. R. ; Pascoal‐Faria, Paula ; Alves, Nuno ; Dias, Juliana R. ; Ginjeira, António</creator><creatorcontrib>Rito Pereira, Mário ; Silva, Goncalo ; Semiao, Viriato ; Silverio, Vania ; Martins, Jorge N. R. ; Pascoal‐Faria, Paula ; Alves, Nuno ; Dias, Juliana R. ; Ginjeira, António</creatorcontrib><description>Aim This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro‐particle image velocimetry (micro‐PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side‐vented needle. Methodology A microchip with confluent canals, manufactured in polydimethylsiloxane was used in a micro‐PIV analysis of the irrigation flow using a side‐vented needle placed 3 mm from the end of the confluence of the canals. Velocity fields and profiles were recorded for flow rates of 0.017 and 0.1 ml/s and compared with those predicted in CFD numerical simulations (using a finite volume commercial code – FLUENT) for both laminar and turbulent regimes. Results The overall flow pattern, isovelocity and vector maps as well as velocity profiles showed a close agreement between the micro‐PIV experimental and CFD predicted data. No relevant differences were observed between the results obtained with the laminar and turbulent flow models used. Conclusions Results showed that the laminar CFD modelling is reliable to predict the flow in similar domains.</description><identifier>ISSN: 0143-2885</identifier><identifier>EISSN: 1365-2591</identifier><identifier>DOI: 10.1111/iej.13827</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>computational fluid dynamics ; Computer applications ; confluent canals ; endodontics ; Flow velocity ; Fluid dynamics ; Irrigation ; Lavage ; micro‐particle image velocimetry ; Polydimethylsiloxane ; positive pressure irrigation ; Velocity</subject><ispartof>International endodontic journal, 2022-12, Vol.55 (12), p.1394-1403</ispartof><rights>2022 British Endodontic Society. Published by John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2022 International Endodontic Journal. Published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3927-beed794a368f8e76de96746a056999ac4202401696b50ae3f419e0fef1a315533</citedby><cites>FETCH-LOGICAL-c3927-beed794a368f8e76de96746a056999ac4202401696b50ae3f419e0fef1a315533</cites><orcidid>0000-0001-5114-1426 ; 0000-0002-1632-5809 ; 0000-0002-6932-2038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fiej.13827$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fiej.13827$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rito Pereira, Mário</creatorcontrib><creatorcontrib>Silva, Goncalo</creatorcontrib><creatorcontrib>Semiao, Viriato</creatorcontrib><creatorcontrib>Silverio, Vania</creatorcontrib><creatorcontrib>Martins, Jorge N. R.</creatorcontrib><creatorcontrib>Pascoal‐Faria, Paula</creatorcontrib><creatorcontrib>Alves, Nuno</creatorcontrib><creatorcontrib>Dias, Juliana R.</creatorcontrib><creatorcontrib>Ginjeira, António</creatorcontrib><title>Experimental validation of a computational fluid dynamics model using micro‐particle image velocimetry of the irrigation flow in confluent canals</title><title>International endodontic journal</title><description>Aim This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro‐particle image velocimetry (micro‐PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side‐vented needle. Methodology A microchip with confluent canals, manufactured in polydimethylsiloxane was used in a micro‐PIV analysis of the irrigation flow using a side‐vented needle placed 3 mm from the end of the confluence of the canals. Velocity fields and profiles were recorded for flow rates of 0.017 and 0.1 ml/s and compared with those predicted in CFD numerical simulations (using a finite volume commercial code – FLUENT) for both laminar and turbulent regimes. Results The overall flow pattern, isovelocity and vector maps as well as velocity profiles showed a close agreement between the micro‐PIV experimental and CFD predicted data. No relevant differences were observed between the results obtained with the laminar and turbulent flow models used. Conclusions Results showed that the laminar CFD modelling is reliable to predict the flow in similar domains.</description><subject>computational fluid dynamics</subject><subject>Computer applications</subject><subject>confluent canals</subject><subject>endodontics</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Irrigation</subject><subject>Lavage</subject><subject>micro‐particle image velocimetry</subject><subject>Polydimethylsiloxane</subject><subject>positive pressure irrigation</subject><subject>Velocity</subject><issn>0143-2885</issn><issn>1365-2591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KxTAQhYMoeP1Z-AYBN7qoJk2bNkuR6x-CG12X2E6uuaRNTVr17nwEwTf0SZxrXQlmMzDz5ZxhDiEHnJ1wfKcWlidclGmxQWZcyDxJc8U3yYzxTCRpWebbZCfGJWMsZ4LPyOf8rYdgW-gG7eiLdrbRg_Ud9YZqWvu2H4efBk6NG21Dm1WnW1tH2voGHB2j7RYUG8F_vX_0Ogy2dkBtqxdAX8D5GsWHsFoLDk84CMEuJgvj_Cu1Hbp0KI0b0FqjT9wjWwYL7P_WXfJwMb8_v0pu7y6vz89uk1qotEgeAZpCZVrI0pRQyAaULDKpWS6VUrrOUpZmjEslH3OmQZiMK2AGDNeC57kQu-Ro0u2Dfx4hDlVrYw3O6Q78GKu0YGUqWcYZood_0KUfw3pZpES2RrhE6nii8BgxBjBVj6fVYVVxVq3jqTCe6iceZE8n9tU6WP0PVtfzm-nHN-BelIw</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Rito Pereira, Mário</creator><creator>Silva, Goncalo</creator><creator>Semiao, Viriato</creator><creator>Silverio, Vania</creator><creator>Martins, Jorge N. R.</creator><creator>Pascoal‐Faria, Paula</creator><creator>Alves, Nuno</creator><creator>Dias, Juliana R.</creator><creator>Ginjeira, António</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5114-1426</orcidid><orcidid>https://orcid.org/0000-0002-1632-5809</orcidid><orcidid>https://orcid.org/0000-0002-6932-2038</orcidid></search><sort><creationdate>202212</creationdate><title>Experimental validation of a computational fluid dynamics model using micro‐particle image velocimetry of the irrigation flow in confluent canals</title><author>Rito Pereira, Mário ; Silva, Goncalo ; Semiao, Viriato ; Silverio, Vania ; Martins, Jorge N. R. ; Pascoal‐Faria, Paula ; Alves, Nuno ; Dias, Juliana R. ; Ginjeira, António</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3927-beed794a368f8e76de96746a056999ac4202401696b50ae3f419e0fef1a315533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>computational fluid dynamics</topic><topic>Computer applications</topic><topic>confluent canals</topic><topic>endodontics</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Irrigation</topic><topic>Lavage</topic><topic>micro‐particle image velocimetry</topic><topic>Polydimethylsiloxane</topic><topic>positive pressure irrigation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rito Pereira, Mário</creatorcontrib><creatorcontrib>Silva, Goncalo</creatorcontrib><creatorcontrib>Semiao, Viriato</creatorcontrib><creatorcontrib>Silverio, Vania</creatorcontrib><creatorcontrib>Martins, Jorge N. R.</creatorcontrib><creatorcontrib>Pascoal‐Faria, Paula</creatorcontrib><creatorcontrib>Alves, Nuno</creatorcontrib><creatorcontrib>Dias, Juliana R.</creatorcontrib><creatorcontrib>Ginjeira, António</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International endodontic journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rito Pereira, Mário</au><au>Silva, Goncalo</au><au>Semiao, Viriato</au><au>Silverio, Vania</au><au>Martins, Jorge N. R.</au><au>Pascoal‐Faria, Paula</au><au>Alves, Nuno</au><au>Dias, Juliana R.</au><au>Ginjeira, António</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of a computational fluid dynamics model using micro‐particle image velocimetry of the irrigation flow in confluent canals</atitle><jtitle>International endodontic journal</jtitle><date>2022-12</date><risdate>2022</risdate><volume>55</volume><issue>12</issue><spage>1394</spage><epage>1403</epage><pages>1394-1403</pages><issn>0143-2885</issn><eissn>1365-2591</eissn><abstract>Aim This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro‐particle image velocimetry (micro‐PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side‐vented needle. Methodology A microchip with confluent canals, manufactured in polydimethylsiloxane was used in a micro‐PIV analysis of the irrigation flow using a side‐vented needle placed 3 mm from the end of the confluence of the canals. Velocity fields and profiles were recorded for flow rates of 0.017 and 0.1 ml/s and compared with those predicted in CFD numerical simulations (using a finite volume commercial code – FLUENT) for both laminar and turbulent regimes. Results The overall flow pattern, isovelocity and vector maps as well as velocity profiles showed a close agreement between the micro‐PIV experimental and CFD predicted data. No relevant differences were observed between the results obtained with the laminar and turbulent flow models used. Conclusions Results showed that the laminar CFD modelling is reliable to predict the flow in similar domains.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/iej.13827</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5114-1426</orcidid><orcidid>https://orcid.org/0000-0002-1632-5809</orcidid><orcidid>https://orcid.org/0000-0002-6932-2038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2885
ispartof International endodontic journal, 2022-12, Vol.55 (12), p.1394-1403
issn 0143-2885
1365-2591
language eng
recordid cdi_proquest_miscellaneous_2708260410
source Wiley Online Library - AutoHoldings Journals
subjects computational fluid dynamics
Computer applications
confluent canals
endodontics
Flow velocity
Fluid dynamics
Irrigation
Lavage
micro‐particle image velocimetry
Polydimethylsiloxane
positive pressure irrigation
Velocity
title Experimental validation of a computational fluid dynamics model using micro‐particle image velocimetry of the irrigation flow in confluent canals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20a%20computational%20fluid%20dynamics%20model%20using%20micro%E2%80%90particle%20image%20velocimetry%20of%20the%20irrigation%20flow%20in%20confluent%20canals&rft.jtitle=International%20endodontic%20journal&rft.au=Rito%20Pereira,%20M%C3%A1rio&rft.date=2022-12&rft.volume=55&rft.issue=12&rft.spage=1394&rft.epage=1403&rft.pages=1394-1403&rft.issn=0143-2885&rft.eissn=1365-2591&rft_id=info:doi/10.1111/iej.13827&rft_dat=%3Cproquest_cross%3E2708260410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734410316&rft_id=info:pmid/&rfr_iscdi=true