Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor

Catalyst recovery is an integral part of photoredox catalysis. It is often solved by adding another component‐a sacrificial agent‐whose role is to convert the catalyst back into its original oxidation state. However, an additive may cause a side reaction thus decreasing the selectivity and overall e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2022-12, Vol.28 (67), p.e202202487-n/a
Hauptverfasser: Obertík, Róbert, Chudoba, Josef, Šturala, Jiří, Tarábek, Ján, Ludvíková, Lucie, Slanina, Tomáš, König, Burkhard, Cibulka, Radek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 67
container_start_page e202202487
container_title Chemistry : a European journal
container_volume 28
creator Obertík, Róbert
Chudoba, Josef
Šturala, Jiří
Tarábek, Ján
Ludvíková, Lucie
Slanina, Tomáš
König, Burkhard
Cibulka, Radek
description Catalyst recovery is an integral part of photoredox catalysis. It is often solved by adding another component‐a sacrificial agent‐whose role is to convert the catalyst back into its original oxidation state. However, an additive may cause a side reaction thus decreasing the selectivity and overall efficiency. Herein, we present a novel approach towards chemoselective photooxidation reactions based on suitable solvent‐acetonitrile acting simultaneously as an electron acceptor for catalyst recovery, and on anaerobic conditions. This is allowed by the unique properties of the catalyst, 7,8‐dimethoxy‐3‐methyl‐5‐phenyl‐5‐deazaflavinium chloride existing in both strongly oxidizing and reducing forms, whose strength is increased by excitation with visible light. Usefulness of this system is demonstrated in chemoselective dehydrogenations of 4‐methoxy‐ and 4‐chlorobenzyl alcohols to aldehydes without over‐oxidation to benzoic acids achieving yields up to 70 %. 4‐Substituted 1‐phenylethanols were oxidized to ketones with yields 80–100 % and, moreover, with yields 31‐98 % in the presence of benzylic methyl group, diphenylmethane or thioanisole which are readily oxidized in the presence of oxygen but these were untouched with our system. Mechanistic studies based on UV‐Vis spectro‐electrochemistry, EPR and time‐resolved spectroscopy measurements showed that the process involving an electron release from an excited deazaflavin radical to acetonitrile under formation of solvated electron is crucial for the catalyst recovery. New way to drive photoredox catalysis: Highly chemoselective photooxidations of benzylic alcohols to carbonyl compounds in the presence of various easily‐oxidizable groups are possible in a simple oxygen‐free system consisting of a substrate, unique deazaflavinium catalyst and acetonitrile which acts simultaneously as a sacrificial electron acceptor and solvent.
doi_str_mv 10.1002/chem.202202487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708259009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753257934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3907-997b9caf9ddd96c4fb216f04c34f6a4aa5cfccc4b4ef6494dc843efb06722bd03</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKdXzwEvXjrTJG2X4yjTCROFuXNJX5MtI2tm0qn9782YKHgRHrzL9_1474fQdUpGKSH0DtZqO6KExuHj4gQN0oymCSvy7BQNiOBFkmdMnKOLEDaEEJEzNkAwM6u17XEZZReUVdCZd4VL2Unbdwbwy9p1zn2aRnbGtQHXPV4G067wwtl31XZYBizxQoI32oCRFk8PId61eAKgdp3zl-hMSxvU1fceouX99LWcJfPnh8dyMk-ACVIkQhS1AKlF0zQiB65rmuaacGBc55JLmYEGAF5zpXMueANjzpSuSV5QWjeEDdHtMXfn3dteha7amgDKWtkqtw8VLciYZiK-HtGbP-jG7X0br4tUxmhWCMYjNTpS4F0IXulq581W-r5KSXXovDp0Xv10HgVxFD6MVf0_dFXOpk-_7hdNRYdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753257934</pqid></control><display><type>article</type><title>Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Obertík, Róbert ; Chudoba, Josef ; Šturala, Jiří ; Tarábek, Ján ; Ludvíková, Lucie ; Slanina, Tomáš ; König, Burkhard ; Cibulka, Radek</creator><creatorcontrib>Obertík, Róbert ; Chudoba, Josef ; Šturala, Jiří ; Tarábek, Ján ; Ludvíková, Lucie ; Slanina, Tomáš ; König, Burkhard ; Cibulka, Radek</creatorcontrib><description>Catalyst recovery is an integral part of photoredox catalysis. It is often solved by adding another component‐a sacrificial agent‐whose role is to convert the catalyst back into its original oxidation state. However, an additive may cause a side reaction thus decreasing the selectivity and overall efficiency. Herein, we present a novel approach towards chemoselective photooxidation reactions based on suitable solvent‐acetonitrile acting simultaneously as an electron acceptor for catalyst recovery, and on anaerobic conditions. This is allowed by the unique properties of the catalyst, 7,8‐dimethoxy‐3‐methyl‐5‐phenyl‐5‐deazaflavinium chloride existing in both strongly oxidizing and reducing forms, whose strength is increased by excitation with visible light. Usefulness of this system is demonstrated in chemoselective dehydrogenations of 4‐methoxy‐ and 4‐chlorobenzyl alcohols to aldehydes without over‐oxidation to benzoic acids achieving yields up to 70 %. 4‐Substituted 1‐phenylethanols were oxidized to ketones with yields 80–100 % and, moreover, with yields 31‐98 % in the presence of benzylic methyl group, diphenylmethane or thioanisole which are readily oxidized in the presence of oxygen but these were untouched with our system. Mechanistic studies based on UV‐Vis spectro‐electrochemistry, EPR and time‐resolved spectroscopy measurements showed that the process involving an electron release from an excited deazaflavin radical to acetonitrile under formation of solvated electron is crucial for the catalyst recovery. New way to drive photoredox catalysis: Highly chemoselective photooxidations of benzylic alcohols to carbonyl compounds in the presence of various easily‐oxidizable groups are possible in a simple oxygen‐free system consisting of a substrate, unique deazaflavinium catalyst and acetonitrile which acts simultaneously as a sacrificial electron acceptor and solvent.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202202487</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetonitrile ; Alcohols ; Aldehydes ; Anaerobic conditions ; Benzoic acid ; Catalysis ; Catalysts ; Chemistry ; chemoselectivity ; Dehydrogenation ; Diphenyl methane ; Electrochemistry ; flavin ; Ketones ; Oxidation ; photocatalysis ; Photooxidation ; Photoredox catalysis ; Recovery ; Selectivity ; solvated electron ; Solvents ; Spectroscopy ; Thioanisole ; Valence</subject><ispartof>Chemistry : a European journal, 2022-12, Vol.28 (67), p.e202202487-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3907-997b9caf9ddd96c4fb216f04c34f6a4aa5cfccc4b4ef6494dc843efb06722bd03</citedby><cites>FETCH-LOGICAL-c3907-997b9caf9ddd96c4fb216f04c34f6a4aa5cfccc4b4ef6494dc843efb06722bd03</cites><orcidid>0000-0001-8092-7268 ; 0000-0002-8113-0709 ; 0000-0002-8584-7715 ; 0000-0003-4127-0376 ; 0000-0001-8014-1484 ; 0000-0003-0116-3824 ; 0000-0002-3697-5593 ; 0000-0002-6131-4850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202202487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202202487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Obertík, Róbert</creatorcontrib><creatorcontrib>Chudoba, Josef</creatorcontrib><creatorcontrib>Šturala, Jiří</creatorcontrib><creatorcontrib>Tarábek, Ján</creatorcontrib><creatorcontrib>Ludvíková, Lucie</creatorcontrib><creatorcontrib>Slanina, Tomáš</creatorcontrib><creatorcontrib>König, Burkhard</creatorcontrib><creatorcontrib>Cibulka, Radek</creatorcontrib><title>Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor</title><title>Chemistry : a European journal</title><description>Catalyst recovery is an integral part of photoredox catalysis. It is often solved by adding another component‐a sacrificial agent‐whose role is to convert the catalyst back into its original oxidation state. However, an additive may cause a side reaction thus decreasing the selectivity and overall efficiency. Herein, we present a novel approach towards chemoselective photooxidation reactions based on suitable solvent‐acetonitrile acting simultaneously as an electron acceptor for catalyst recovery, and on anaerobic conditions. This is allowed by the unique properties of the catalyst, 7,8‐dimethoxy‐3‐methyl‐5‐phenyl‐5‐deazaflavinium chloride existing in both strongly oxidizing and reducing forms, whose strength is increased by excitation with visible light. Usefulness of this system is demonstrated in chemoselective dehydrogenations of 4‐methoxy‐ and 4‐chlorobenzyl alcohols to aldehydes without over‐oxidation to benzoic acids achieving yields up to 70 %. 4‐Substituted 1‐phenylethanols were oxidized to ketones with yields 80–100 % and, moreover, with yields 31‐98 % in the presence of benzylic methyl group, diphenylmethane or thioanisole which are readily oxidized in the presence of oxygen but these were untouched with our system. Mechanistic studies based on UV‐Vis spectro‐electrochemistry, EPR and time‐resolved spectroscopy measurements showed that the process involving an electron release from an excited deazaflavin radical to acetonitrile under formation of solvated electron is crucial for the catalyst recovery. New way to drive photoredox catalysis: Highly chemoselective photooxidations of benzylic alcohols to carbonyl compounds in the presence of various easily‐oxidizable groups are possible in a simple oxygen‐free system consisting of a substrate, unique deazaflavinium catalyst and acetonitrile which acts simultaneously as a sacrificial electron acceptor and solvent.</description><subject>Acetonitrile</subject><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Anaerobic conditions</subject><subject>Benzoic acid</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>chemoselectivity</subject><subject>Dehydrogenation</subject><subject>Diphenyl methane</subject><subject>Electrochemistry</subject><subject>flavin</subject><subject>Ketones</subject><subject>Oxidation</subject><subject>photocatalysis</subject><subject>Photooxidation</subject><subject>Photoredox catalysis</subject><subject>Recovery</subject><subject>Selectivity</subject><subject>solvated electron</subject><subject>Solvents</subject><subject>Spectroscopy</subject><subject>Thioanisole</subject><subject>Valence</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKdXzwEvXjrTJG2X4yjTCROFuXNJX5MtI2tm0qn9782YKHgRHrzL9_1474fQdUpGKSH0DtZqO6KExuHj4gQN0oymCSvy7BQNiOBFkmdMnKOLEDaEEJEzNkAwM6u17XEZZReUVdCZd4VL2Unbdwbwy9p1zn2aRnbGtQHXPV4G067wwtl31XZYBizxQoI32oCRFk8PId61eAKgdp3zl-hMSxvU1fceouX99LWcJfPnh8dyMk-ACVIkQhS1AKlF0zQiB65rmuaacGBc55JLmYEGAF5zpXMueANjzpSuSV5QWjeEDdHtMXfn3dteha7amgDKWtkqtw8VLciYZiK-HtGbP-jG7X0br4tUxmhWCMYjNTpS4F0IXulq581W-r5KSXXovDp0Xv10HgVxFD6MVf0_dFXOpk-_7hdNRYdA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Obertík, Róbert</creator><creator>Chudoba, Josef</creator><creator>Šturala, Jiří</creator><creator>Tarábek, Ján</creator><creator>Ludvíková, Lucie</creator><creator>Slanina, Tomáš</creator><creator>König, Burkhard</creator><creator>Cibulka, Radek</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8092-7268</orcidid><orcidid>https://orcid.org/0000-0002-8113-0709</orcidid><orcidid>https://orcid.org/0000-0002-8584-7715</orcidid><orcidid>https://orcid.org/0000-0003-4127-0376</orcidid><orcidid>https://orcid.org/0000-0001-8014-1484</orcidid><orcidid>https://orcid.org/0000-0003-0116-3824</orcidid><orcidid>https://orcid.org/0000-0002-3697-5593</orcidid><orcidid>https://orcid.org/0000-0002-6131-4850</orcidid></search><sort><creationdate>20221201</creationdate><title>Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor</title><author>Obertík, Róbert ; Chudoba, Josef ; Šturala, Jiří ; Tarábek, Ján ; Ludvíková, Lucie ; Slanina, Tomáš ; König, Burkhard ; Cibulka, Radek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3907-997b9caf9ddd96c4fb216f04c34f6a4aa5cfccc4b4ef6494dc843efb06722bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetonitrile</topic><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Anaerobic conditions</topic><topic>Benzoic acid</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>chemoselectivity</topic><topic>Dehydrogenation</topic><topic>Diphenyl methane</topic><topic>Electrochemistry</topic><topic>flavin</topic><topic>Ketones</topic><topic>Oxidation</topic><topic>photocatalysis</topic><topic>Photooxidation</topic><topic>Photoredox catalysis</topic><topic>Recovery</topic><topic>Selectivity</topic><topic>solvated electron</topic><topic>Solvents</topic><topic>Spectroscopy</topic><topic>Thioanisole</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obertík, Róbert</creatorcontrib><creatorcontrib>Chudoba, Josef</creatorcontrib><creatorcontrib>Šturala, Jiří</creatorcontrib><creatorcontrib>Tarábek, Ján</creatorcontrib><creatorcontrib>Ludvíková, Lucie</creatorcontrib><creatorcontrib>Slanina, Tomáš</creatorcontrib><creatorcontrib>König, Burkhard</creatorcontrib><creatorcontrib>Cibulka, Radek</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obertík, Róbert</au><au>Chudoba, Josef</au><au>Šturala, Jiří</au><au>Tarábek, Ján</au><au>Ludvíková, Lucie</au><au>Slanina, Tomáš</au><au>König, Burkhard</au><au>Cibulka, Radek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor</atitle><jtitle>Chemistry : a European journal</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>67</issue><spage>e202202487</spage><epage>n/a</epage><pages>e202202487-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Catalyst recovery is an integral part of photoredox catalysis. It is often solved by adding another component‐a sacrificial agent‐whose role is to convert the catalyst back into its original oxidation state. However, an additive may cause a side reaction thus decreasing the selectivity and overall efficiency. Herein, we present a novel approach towards chemoselective photooxidation reactions based on suitable solvent‐acetonitrile acting simultaneously as an electron acceptor for catalyst recovery, and on anaerobic conditions. This is allowed by the unique properties of the catalyst, 7,8‐dimethoxy‐3‐methyl‐5‐phenyl‐5‐deazaflavinium chloride existing in both strongly oxidizing and reducing forms, whose strength is increased by excitation with visible light. Usefulness of this system is demonstrated in chemoselective dehydrogenations of 4‐methoxy‐ and 4‐chlorobenzyl alcohols to aldehydes without over‐oxidation to benzoic acids achieving yields up to 70 %. 4‐Substituted 1‐phenylethanols were oxidized to ketones with yields 80–100 % and, moreover, with yields 31‐98 % in the presence of benzylic methyl group, diphenylmethane or thioanisole which are readily oxidized in the presence of oxygen but these were untouched with our system. Mechanistic studies based on UV‐Vis spectro‐electrochemistry, EPR and time‐resolved spectroscopy measurements showed that the process involving an electron release from an excited deazaflavin radical to acetonitrile under formation of solvated electron is crucial for the catalyst recovery. New way to drive photoredox catalysis: Highly chemoselective photooxidations of benzylic alcohols to carbonyl compounds in the presence of various easily‐oxidizable groups are possible in a simple oxygen‐free system consisting of a substrate, unique deazaflavinium catalyst and acetonitrile which acts simultaneously as a sacrificial electron acceptor and solvent.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202202487</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8092-7268</orcidid><orcidid>https://orcid.org/0000-0002-8113-0709</orcidid><orcidid>https://orcid.org/0000-0002-8584-7715</orcidid><orcidid>https://orcid.org/0000-0003-4127-0376</orcidid><orcidid>https://orcid.org/0000-0001-8014-1484</orcidid><orcidid>https://orcid.org/0000-0003-0116-3824</orcidid><orcidid>https://orcid.org/0000-0002-3697-5593</orcidid><orcidid>https://orcid.org/0000-0002-6131-4850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2022-12, Vol.28 (67), p.e202202487-n/a
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2708259009
source Wiley Online Library Journals Frontfile Complete
subjects Acetonitrile
Alcohols
Aldehydes
Anaerobic conditions
Benzoic acid
Catalysis
Catalysts
Chemistry
chemoselectivity
Dehydrogenation
Diphenyl methane
Electrochemistry
flavin
Ketones
Oxidation
photocatalysis
Photooxidation
Photoredox catalysis
Recovery
Selectivity
solvated electron
Solvents
Spectroscopy
Thioanisole
Valence
title Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Chemoselective%20Catalytic%20Photooxidations%20by%20Using%20Solvent%20as%20a%20Sacrificial%20Electron%20Acceptor&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Obert%C3%ADk,%20R%C3%B3bert&rft.date=2022-12-01&rft.volume=28&rft.issue=67&rft.spage=e202202487&rft.epage=n/a&rft.pages=e202202487-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202202487&rft_dat=%3Cproquest_cross%3E2753257934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753257934&rft_id=info:pmid/&rfr_iscdi=true