Approximability and nonapproximability results for minimizing total flow time on a single machine

We consider the problem of scheduling n jobs that are released over time on a single machine in order to minimize the total flow time. This problem is well known to be NP-complete, and the best polynomial-time approximation algorithms constructed so far had (more or less trivial) worst-case performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1999, Vol.28 (4), p.1155-1166
Hauptverfasser: KELLERER, H, TAUTENHAHN, T, WOEGINGER, G. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1166
container_issue 4
container_start_page 1155
container_title SIAM journal on computing
container_volume 28
creator KELLERER, H
TAUTENHAHN, T
WOEGINGER, G. J
description We consider the problem of scheduling n jobs that are released over time on a single machine in order to minimize the total flow time. This problem is well known to be NP-complete, and the best polynomial-time approximation algorithms constructed so far had (more or less trivial) worst-case performance guarantees of O(n). In this paper, we present one positive and one negative result on polynomial-time approximations for the minimum total flow time problem: The positive result is the first approximation algorithm with a sublinear worst-case performance guarantee of $O(\sqrt{n})$. This algorithm is based on resolving the preemptions of the corresponding optimum preemptive schedule. The performance guarantee of our approximation algorithm is not far from best possible, as our second, negative result demonstrates: Unless P=NP, no polynomial-time approximation algorithm for minimum total flow time can have a worst-case performance guarantee of $O(n^{1/2-\eps})$ for any $\eps>0$.
doi_str_mv 10.1137/S0097539796305778
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27076662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575998621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b245dbf1d1f360cae540795713945e2644fcdc0e1074a12b9073a2a42e38e5db3</originalsourceid><addsrcrecordid>eNplkF9LwzAUxYMoOKcfwLcg4lv13iZtlscx_AcDH9TnkqapZqTJTFp0fno7NhD06cI9v3M4HELOEa4Rmbh5BpCiYFLIkkEhxOyATBBkkQlEPCSTrZxt9WNyktIKADlHNiFqvl7H8GU7VVtn-w1VvqE-ePXnHU0aXJ9oGyLtrLed_bb-jfahV462LnzS3naGBk8VTaPiDO2UfrfenJKjVrlkzvZ3Sl7vbl8WD9ny6f5xMV9mmgnWZ3XOi6ZuscGWlaCVKTgIWQhkkhcmLzlvdaPBIAiuMK8lCKZyxXPDZmZ0sim52uWOxT8Gk_qqs0kb55Q3YUhVLkCUZZmP4MUfcBWG6MdulUSJuUCxhXAH6RhSiqat1nFcI24qhGq7ePVv8dFzuQ9WSSvXRuW1Tb9GCSVAyX4AZyyA6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919127172</pqid></control><display><type>article</type><title>Approximability and nonapproximability results for minimizing total flow time on a single machine</title><source>SIAM Journals Online</source><source>EBSCOhost Business Source Complete</source><creator>KELLERER, H ; TAUTENHAHN, T ; WOEGINGER, G. J</creator><creatorcontrib>KELLERER, H ; TAUTENHAHN, T ; WOEGINGER, G. J</creatorcontrib><description>We consider the problem of scheduling n jobs that are released over time on a single machine in order to minimize the total flow time. This problem is well known to be NP-complete, and the best polynomial-time approximation algorithms constructed so far had (more or less trivial) worst-case performance guarantees of O(n). In this paper, we present one positive and one negative result on polynomial-time approximations for the minimum total flow time problem: The positive result is the first approximation algorithm with a sublinear worst-case performance guarantee of $O(\sqrt{n})$. This algorithm is based on resolving the preemptions of the corresponding optimum preemptive schedule. The performance guarantee of our approximation algorithm is not far from best possible, as our second, negative result demonstrates: Unless P=NP, no polynomial-time approximation algorithm for minimum total flow time can have a worst-case performance guarantee of $O(n^{1/2-\eps})$ for any $\eps&gt;0$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539796305778</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximation ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; General algebraic systems ; Graph theory ; Guarantees ; Job shops ; Mathematical programming ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Schedules ; Scheduling ; Scholarships &amp; fellowships ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1999, Vol.28 (4), p.1155-1166</ispartof><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1999 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b245dbf1d1f360cae540795713945e2644fcdc0e1074a12b9073a2a42e38e5db3</citedby><cites>FETCH-LOGICAL-c373t-b245dbf1d1f360cae540795713945e2644fcdc0e1074a12b9073a2a42e38e5db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1906006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KELLERER, H</creatorcontrib><creatorcontrib>TAUTENHAHN, T</creatorcontrib><creatorcontrib>WOEGINGER, G. J</creatorcontrib><title>Approximability and nonapproximability results for minimizing total flow time on a single machine</title><title>SIAM journal on computing</title><description>We consider the problem of scheduling n jobs that are released over time on a single machine in order to minimize the total flow time. This problem is well known to be NP-complete, and the best polynomial-time approximation algorithms constructed so far had (more or less trivial) worst-case performance guarantees of O(n). In this paper, we present one positive and one negative result on polynomial-time approximations for the minimum total flow time problem: The positive result is the first approximation algorithm with a sublinear worst-case performance guarantee of $O(\sqrt{n})$. This algorithm is based on resolving the preemptions of the corresponding optimum preemptive schedule. The performance guarantee of our approximation algorithm is not far from best possible, as our second, negative result demonstrates: Unless P=NP, no polynomial-time approximation algorithm for minimum total flow time can have a worst-case performance guarantee of $O(n^{1/2-\eps})$ for any $\eps&gt;0$.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>General algebraic systems</subject><subject>Graph theory</subject><subject>Guarantees</subject><subject>Job shops</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scholarships &amp; fellowships</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkF9LwzAUxYMoOKcfwLcg4lv13iZtlscx_AcDH9TnkqapZqTJTFp0fno7NhD06cI9v3M4HELOEa4Rmbh5BpCiYFLIkkEhxOyATBBkkQlEPCSTrZxt9WNyktIKADlHNiFqvl7H8GU7VVtn-w1VvqE-ePXnHU0aXJ9oGyLtrLed_bb-jfahV462LnzS3naGBk8VTaPiDO2UfrfenJKjVrlkzvZ3Sl7vbl8WD9ny6f5xMV9mmgnWZ3XOi6ZuscGWlaCVKTgIWQhkkhcmLzlvdaPBIAiuMK8lCKZyxXPDZmZ0sim52uWOxT8Gk_qqs0kb55Q3YUhVLkCUZZmP4MUfcBWG6MdulUSJuUCxhXAH6RhSiqat1nFcI24qhGq7ePVv8dFzuQ9WSSvXRuW1Tb9GCSVAyX4AZyyA6w</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>KELLERER, H</creator><creator>TAUTENHAHN, T</creator><creator>WOEGINGER, G. J</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Approximability and nonapproximability results for minimizing total flow time on a single machine</title><author>KELLERER, H ; TAUTENHAHN, T ; WOEGINGER, G. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b245dbf1d1f360cae540795713945e2644fcdc0e1074a12b9073a2a42e38e5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>General algebraic systems</topic><topic>Graph theory</topic><topic>Guarantees</topic><topic>Job shops</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scholarships &amp; fellowships</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KELLERER, H</creatorcontrib><creatorcontrib>TAUTENHAHN, T</creatorcontrib><creatorcontrib>WOEGINGER, G. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KELLERER, H</au><au>TAUTENHAHN, T</au><au>WOEGINGER, G. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximability and nonapproximability results for minimizing total flow time on a single machine</atitle><jtitle>SIAM journal on computing</jtitle><date>1999</date><risdate>1999</risdate><volume>28</volume><issue>4</issue><spage>1155</spage><epage>1166</epage><pages>1155-1166</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We consider the problem of scheduling n jobs that are released over time on a single machine in order to minimize the total flow time. This problem is well known to be NP-complete, and the best polynomial-time approximation algorithms constructed so far had (more or less trivial) worst-case performance guarantees of O(n). In this paper, we present one positive and one negative result on polynomial-time approximations for the minimum total flow time problem: The positive result is the first approximation algorithm with a sublinear worst-case performance guarantee of $O(\sqrt{n})$. This algorithm is based on resolving the preemptions of the corresponding optimum preemptive schedule. The performance guarantee of our approximation algorithm is not far from best possible, as our second, negative result demonstrates: Unless P=NP, no polynomial-time approximation algorithm for minimum total flow time can have a worst-case performance guarantee of $O(n^{1/2-\eps})$ for any $\eps&gt;0$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539796305778</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1999, Vol.28 (4), p.1155-1166
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_miscellaneous_27076662
source SIAM Journals Online; EBSCOhost Business Source Complete
subjects Algebra
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
General algebraic systems
Graph theory
Guarantees
Job shops
Mathematical programming
Mathematics
Operational research and scientific management
Operational research. Management science
Schedules
Scheduling
Scholarships & fellowships
Sciences and techniques of general use
Theoretical computing
title Approximability and nonapproximability results for minimizing total flow time on a single machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximability%20and%20nonapproximability%20results%20for%20minimizing%20total%20flow%20time%20on%20a%20single%20machine&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=KELLERER,%20H&rft.date=1999&rft.volume=28&rft.issue=4&rft.spage=1155&rft.epage=1166&rft.pages=1155-1166&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539796305778&rft_dat=%3Cproquest_cross%3E2575998621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919127172&rft_id=info:pmid/&rfr_iscdi=true