Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution

Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-09, Vol.51 (36), p.13762-13770
Hauptverfasser: Tian, Haoze, Zhang, Ke, Feng, Xiaoan, Chen, Jinxi, Lou, Yongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13770
container_issue 36
container_start_page 13762
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 51
creator Tian, Haoze
Zhang, Ke
Feng, Xiaoan
Chen, Jinxi
Lou, Yongbing
description Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.
doi_str_mv 10.1039/d2dt02167f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2707617263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715993944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-3a18b01b0c43a14bca7b9d72b49127106c9303a5606722bb74fde15d4fb7455c3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0EEqWw8ASWWFhC_ZcYj6hQilToAMyV4zhtiusb7ASoWHgH3pAnwRKIgeWeb_h0dA9Cx5ScUcLVqGJVRxgtZL2DBlRImSnGxe4fs2IfHcS4JoQxkrMBer-3rs5i37YQOlvhMdzCXIzumonNZpdTbCDYr4_PuLLOYa89BKgiXgZ49Rg89o15sg7XoDfpBGz9SnuTeqyzpgtgdKfdNjYRQ43hbbu0HtsXcH3XgD9Ee7V20R795hA9Tq4extNsNr--GV_MsjYt6TKu6XlJaEmMSChKo2WpKslKoSiTlBRGccJ1XpBCMlaWUtSVpXkl6oR5bvgQnf70tgGeexu7xaaJJg3S3kIfF0wSWVDJCp7Uk3_qGvrg03fJorlSXAnBvwEdDG6r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715993944</pqid></control><display><type>article</type><title>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tian, Haoze ; Zhang, Ke ; Feng, Xiaoan ; Chen, Jinxi ; Lou, Yongbing</creator><creatorcontrib>Tian, Haoze ; Zhang, Ke ; Feng, Xiaoan ; Chen, Jinxi ; Lou, Yongbing</creatorcontrib><description>Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt02167f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amorphous materials ; Catalysts ; Electrocatalysts ; Electron transfer ; Electrons ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Metal foams ; Nanorods ; Nickel compounds ; Oxidation ; Oxygen evolution reactions ; Reaction kinetics ; Shell stability ; Substrates</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-09, Vol.51 (36), p.13762-13770</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tian, Haoze</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Feng, Xiaoan</creatorcontrib><creatorcontrib>Chen, Jinxi</creatorcontrib><creatorcontrib>Lou, Yongbing</creatorcontrib><title>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.</description><subject>Amorphous materials</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Metal foams</subject><subject>Nanorods</subject><subject>Nickel compounds</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Reaction kinetics</subject><subject>Shell stability</subject><subject>Substrates</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0EEqWw8ASWWFhC_ZcYj6hQilToAMyV4zhtiusb7ASoWHgH3pAnwRKIgeWeb_h0dA9Cx5ScUcLVqGJVRxgtZL2DBlRImSnGxe4fs2IfHcS4JoQxkrMBer-3rs5i37YQOlvhMdzCXIzumonNZpdTbCDYr4_PuLLOYa89BKgiXgZ49Rg89o15sg7XoDfpBGz9SnuTeqyzpgtgdKfdNjYRQ43hbbu0HtsXcH3XgD9Ee7V20R795hA9Tq4extNsNr--GV_MsjYt6TKu6XlJaEmMSChKo2WpKslKoSiTlBRGccJ1XpBCMlaWUtSVpXkl6oR5bvgQnf70tgGeexu7xaaJJg3S3kIfF0wSWVDJCp7Uk3_qGvrg03fJorlSXAnBvwEdDG6r</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Tian, Haoze</creator><creator>Zhang, Ke</creator><creator>Feng, Xiaoan</creator><creator>Chen, Jinxi</creator><creator>Lou, Yongbing</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220920</creationdate><title>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</title><author>Tian, Haoze ; Zhang, Ke ; Feng, Xiaoan ; Chen, Jinxi ; Lou, Yongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-3a18b01b0c43a14bca7b9d72b49127106c9303a5606722bb74fde15d4fb7455c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous materials</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Metal foams</topic><topic>Nanorods</topic><topic>Nickel compounds</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Reaction kinetics</topic><topic>Shell stability</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Haoze</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Feng, Xiaoan</creatorcontrib><creatorcontrib>Chen, Jinxi</creatorcontrib><creatorcontrib>Lou, Yongbing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Haoze</au><au>Zhang, Ke</au><au>Feng, Xiaoan</au><au>Chen, Jinxi</au><au>Lou, Yongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>51</volume><issue>36</issue><spage>13762</spage><epage>13770</epage><pages>13762-13770</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2dt02167f</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2022-09, Vol.51 (36), p.13762-13770
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2707617263
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amorphous materials
Catalysts
Electrocatalysts
Electron transfer
Electrons
Hydroxides
Intermetallic compounds
Iron compounds
Metal foams
Nanorods
Nickel compounds
Oxidation
Oxygen evolution reactions
Reaction kinetics
Shell stability
Substrates
title Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-supported%20CoMoO4/NiFe-LDH%20core%E2%80%93shell%20nanorods%20grown%20on%20nickel%20foam%20for%20enhanced%20electrocatalysis%20of%20oxygen%20evolution&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Tian,%20Haoze&rft.date=2022-09-20&rft.volume=51&rft.issue=36&rft.spage=13762&rft.epage=13770&rft.pages=13762-13770&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt02167f&rft_dat=%3Cproquest%3E2715993944%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715993944&rft_id=info:pmid/&rfr_iscdi=true