Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution
Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydro...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2022-09, Vol.51 (36), p.13762-13770 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13770 |
---|---|
container_issue | 36 |
container_start_page | 13762 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 51 |
creator | Tian, Haoze Zhang, Ke Feng, Xiaoan Chen, Jinxi Lou, Yongbing |
description | Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts. |
doi_str_mv | 10.1039/d2dt02167f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2707617263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715993944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-3a18b01b0c43a14bca7b9d72b49127106c9303a5606722bb74fde15d4fb7455c3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0EEqWw8ASWWFhC_ZcYj6hQilToAMyV4zhtiusb7ASoWHgH3pAnwRKIgeWeb_h0dA9Cx5ScUcLVqGJVRxgtZL2DBlRImSnGxe4fs2IfHcS4JoQxkrMBer-3rs5i37YQOlvhMdzCXIzumonNZpdTbCDYr4_PuLLOYa89BKgiXgZ49Rg89o15sg7XoDfpBGz9SnuTeqyzpgtgdKfdNjYRQ43hbbu0HtsXcH3XgD9Ee7V20R795hA9Tq4extNsNr--GV_MsjYt6TKu6XlJaEmMSChKo2WpKslKoSiTlBRGccJ1XpBCMlaWUtSVpXkl6oR5bvgQnf70tgGeexu7xaaJJg3S3kIfF0wSWVDJCp7Uk3_qGvrg03fJorlSXAnBvwEdDG6r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715993944</pqid></control><display><type>article</type><title>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tian, Haoze ; Zhang, Ke ; Feng, Xiaoan ; Chen, Jinxi ; Lou, Yongbing</creator><creatorcontrib>Tian, Haoze ; Zhang, Ke ; Feng, Xiaoan ; Chen, Jinxi ; Lou, Yongbing</creatorcontrib><description>Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt02167f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amorphous materials ; Catalysts ; Electrocatalysts ; Electron transfer ; Electrons ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Metal foams ; Nanorods ; Nickel compounds ; Oxidation ; Oxygen evolution reactions ; Reaction kinetics ; Shell stability ; Substrates</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-09, Vol.51 (36), p.13762-13770</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tian, Haoze</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Feng, Xiaoan</creatorcontrib><creatorcontrib>Chen, Jinxi</creatorcontrib><creatorcontrib>Lou, Yongbing</creatorcontrib><title>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.</description><subject>Amorphous materials</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Metal foams</subject><subject>Nanorods</subject><subject>Nickel compounds</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Reaction kinetics</subject><subject>Shell stability</subject><subject>Substrates</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0EEqWw8ASWWFhC_ZcYj6hQilToAMyV4zhtiusb7ASoWHgH3pAnwRKIgeWeb_h0dA9Cx5ScUcLVqGJVRxgtZL2DBlRImSnGxe4fs2IfHcS4JoQxkrMBer-3rs5i37YQOlvhMdzCXIzumonNZpdTbCDYr4_PuLLOYa89BKgiXgZ49Rg89o15sg7XoDfpBGz9SnuTeqyzpgtgdKfdNjYRQ43hbbu0HtsXcH3XgD9Ee7V20R795hA9Tq4extNsNr--GV_MsjYt6TKu6XlJaEmMSChKo2WpKslKoSiTlBRGccJ1XpBCMlaWUtSVpXkl6oR5bvgQnf70tgGeexu7xaaJJg3S3kIfF0wSWVDJCp7Uk3_qGvrg03fJorlSXAnBvwEdDG6r</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Tian, Haoze</creator><creator>Zhang, Ke</creator><creator>Feng, Xiaoan</creator><creator>Chen, Jinxi</creator><creator>Lou, Yongbing</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220920</creationdate><title>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</title><author>Tian, Haoze ; Zhang, Ke ; Feng, Xiaoan ; Chen, Jinxi ; Lou, Yongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-3a18b01b0c43a14bca7b9d72b49127106c9303a5606722bb74fde15d4fb7455c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous materials</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Metal foams</topic><topic>Nanorods</topic><topic>Nickel compounds</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Reaction kinetics</topic><topic>Shell stability</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Haoze</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Feng, Xiaoan</creatorcontrib><creatorcontrib>Chen, Jinxi</creatorcontrib><creatorcontrib>Lou, Yongbing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Haoze</au><au>Zhang, Ke</au><au>Feng, Xiaoan</au><au>Chen, Jinxi</au><au>Lou, Yongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>51</volume><issue>36</issue><spage>13762</spage><epage>13770</epage><pages>13762-13770</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core–shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel–iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm−2) and smaller Tafel slope (34 mV dec−1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm−2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2dt02167f</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2022-09, Vol.51 (36), p.13762-13770 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_2707617263 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Amorphous materials Catalysts Electrocatalysts Electron transfer Electrons Hydroxides Intermetallic compounds Iron compounds Metal foams Nanorods Nickel compounds Oxidation Oxygen evolution reactions Reaction kinetics Shell stability Substrates |
title | Self-supported CoMoO4/NiFe-LDH core–shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-supported%20CoMoO4/NiFe-LDH%20core%E2%80%93shell%20nanorods%20grown%20on%20nickel%20foam%20for%20enhanced%20electrocatalysis%20of%20oxygen%20evolution&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Tian,%20Haoze&rft.date=2022-09-20&rft.volume=51&rft.issue=36&rft.spage=13762&rft.epage=13770&rft.pages=13762-13770&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt02167f&rft_dat=%3Cproquest%3E2715993944%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715993944&rft_id=info:pmid/&rfr_iscdi=true |