Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds
Background PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18 F-PSMA-1007 PET radiomics featur...
Gespeichert in:
Veröffentlicht in: | Radiologia medica 2022-10, Vol.127 (10), p.1170-1178 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1178 |
---|---|
container_issue | 10 |
container_start_page | 1170 |
container_title | Radiologia medica |
container_volume | 127 |
creator | Yao, Fei Bian, Shuying Zhu, Dongqin Yuan, Yaping Pan, Kehua Pan, Zhifang Feng, Xianghao Tang, Kun Yang, Yunjun |
description | Background
PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of
18
F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics.
Methods
One hundred and seventy-three PCa patients with complete preoperative
18
F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes.
Results
For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]).
Conclusion
The
18
F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa. |
doi_str_mv | 10.1007/s11547-022-01541-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2707617201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718225485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</originalsourceid><addsrcrecordid>eNp9kc9qFjEUxQexYK19AVcBN26iN5n_7kppVWix0HY93MnczKRkks8kU_HhfDfz9SsoLlzdG_idw805RfFWwAcB0H6MQtRVy0FKDnkTXLwojkUnG970Xfnyr_1V8TrGB4AKBPTHxa9rVItxxCxhcMbNfMRIEws4Gb8aFZn2ga2bTWZnie2CWTH8zNPHhImYQqcosNF462ej0DK1YECVKJiY9vpdoMmoZLxjP0xamOgu-c3t9RnfH85uLu4-MeXXHWY-I7h6N7PJaE2BXGKP3m4rsUjzmp_4ZJOWQHHxdopviiONNtLp8zwp7i8v7s6_8Ktvn7-en11xJTuZOIJohNLU9EJT14xlP-III0FLfU4BZV_W0JfQVlXdqUpjpUXTjgI0iK6uVHlSvD_45n9_3yimYTVRkbXoyG9xkC20jWgliIy--wd98Ftw-bpM5RZkXXV1puSBUjnIGEgPz8kOAoZ9MMOh0SE3Ojw1Ouyty4MoZtjNFP5Y_0f1G5I4ppM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718225485</pqid></control><display><type>article</type><title>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</title><source>SpringerLink Journals</source><creator>Yao, Fei ; Bian, Shuying ; Zhu, Dongqin ; Yuan, Yaping ; Pan, Kehua ; Pan, Zhifang ; Feng, Xianghao ; Tang, Kun ; Yang, Yunjun</creator><creatorcontrib>Yao, Fei ; Bian, Shuying ; Zhu, Dongqin ; Yuan, Yaping ; Pan, Kehua ; Pan, Zhifang ; Feng, Xianghao ; Tang, Kun ; Yang, Yunjun</creatorcontrib><description>Background
PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of
18
F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics.
Methods
One hundred and seventy-three PCa patients with complete preoperative
18
F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes.
Results
For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]).
Conclusion
The
18
F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-022-01541-1</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Diagnostic Radiology ; Feature extraction ; Imaging ; Interventional Radiology ; Machine learning ; Medicine ; Medicine & Public Health ; Neuroradiology ; Oncology Imaging ; Performance indices ; Performance prediction ; Prediction models ; Prostate cancer ; Radiology ; Radiomics ; Support vector machines ; Thresholds ; Ultrasound</subject><ispartof>Radiologia medica, 2022-10, Vol.127 (10), p.1170-1178</ispartof><rights>Italian Society of Medical Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</citedby><cites>FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</cites><orcidid>0000-0003-2080-2417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11547-022-01541-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11547-022-01541-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yao, Fei</creatorcontrib><creatorcontrib>Bian, Shuying</creatorcontrib><creatorcontrib>Zhu, Dongqin</creatorcontrib><creatorcontrib>Yuan, Yaping</creatorcontrib><creatorcontrib>Pan, Kehua</creatorcontrib><creatorcontrib>Pan, Zhifang</creatorcontrib><creatorcontrib>Feng, Xianghao</creatorcontrib><creatorcontrib>Tang, Kun</creatorcontrib><creatorcontrib>Yang, Yunjun</creatorcontrib><title>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><description>Background
PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of
18
F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics.
Methods
One hundred and seventy-three PCa patients with complete preoperative
18
F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes.
Results
For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]).
Conclusion
The
18
F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.</description><subject>Diagnostic Radiology</subject><subject>Feature extraction</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neuroradiology</subject><subject>Oncology Imaging</subject><subject>Performance indices</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Prostate cancer</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Support vector machines</subject><subject>Thresholds</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qFjEUxQexYK19AVcBN26iN5n_7kppVWix0HY93MnczKRkks8kU_HhfDfz9SsoLlzdG_idw805RfFWwAcB0H6MQtRVy0FKDnkTXLwojkUnG970Xfnyr_1V8TrGB4AKBPTHxa9rVItxxCxhcMbNfMRIEws4Gb8aFZn2ga2bTWZnie2CWTH8zNPHhImYQqcosNF462ej0DK1YECVKJiY9vpdoMmoZLxjP0xamOgu-c3t9RnfH85uLu4-MeXXHWY-I7h6N7PJaE2BXGKP3m4rsUjzmp_4ZJOWQHHxdopviiONNtLp8zwp7i8v7s6_8Ktvn7-en11xJTuZOIJohNLU9EJT14xlP-III0FLfU4BZV_W0JfQVlXdqUpjpUXTjgI0iK6uVHlSvD_45n9_3yimYTVRkbXoyG9xkC20jWgliIy--wd98Ftw-bpM5RZkXXV1puSBUjnIGEgPz8kOAoZ9MMOh0SE3Ojw1Ouyty4MoZtjNFP5Y_0f1G5I4ppM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yao, Fei</creator><creator>Bian, Shuying</creator><creator>Zhu, Dongqin</creator><creator>Yuan, Yaping</creator><creator>Pan, Kehua</creator><creator>Pan, Zhifang</creator><creator>Feng, Xianghao</creator><creator>Tang, Kun</creator><creator>Yang, Yunjun</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2080-2417</orcidid></search><sort><creationdate>20221001</creationdate><title>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</title><author>Yao, Fei ; Bian, Shuying ; Zhu, Dongqin ; Yuan, Yaping ; Pan, Kehua ; Pan, Zhifang ; Feng, Xianghao ; Tang, Kun ; Yang, Yunjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diagnostic Radiology</topic><topic>Feature extraction</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neuroradiology</topic><topic>Oncology Imaging</topic><topic>Performance indices</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Prostate cancer</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Support vector machines</topic><topic>Thresholds</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Fei</creatorcontrib><creatorcontrib>Bian, Shuying</creatorcontrib><creatorcontrib>Zhu, Dongqin</creatorcontrib><creatorcontrib>Yuan, Yaping</creatorcontrib><creatorcontrib>Pan, Kehua</creatorcontrib><creatorcontrib>Pan, Zhifang</creatorcontrib><creatorcontrib>Feng, Xianghao</creatorcontrib><creatorcontrib>Tang, Kun</creatorcontrib><creatorcontrib>Yang, Yunjun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Fei</au><au>Bian, Shuying</au><au>Zhu, Dongqin</au><au>Yuan, Yaping</au><au>Pan, Kehua</au><au>Pan, Zhifang</au><au>Feng, Xianghao</au><au>Tang, Kun</au><au>Yang, Yunjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>127</volume><issue>10</issue><spage>1170</spage><epage>1178</epage><pages>1170-1178</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Background
PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of
18
F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics.
Methods
One hundred and seventy-three PCa patients with complete preoperative
18
F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes.
Results
For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]).
Conclusion
The
18
F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s11547-022-01541-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2080-2417</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1826-6983 |
ispartof | Radiologia medica, 2022-10, Vol.127 (10), p.1170-1178 |
issn | 1826-6983 0033-8362 1826-6983 |
language | eng |
recordid | cdi_proquest_miscellaneous_2707617201 |
source | SpringerLink Journals |
subjects | Diagnostic Radiology Feature extraction Imaging Interventional Radiology Machine learning Medicine Medicine & Public Health Neuroradiology Oncology Imaging Performance indices Performance prediction Prediction models Prostate cancer Radiology Radiomics Support vector machines Thresholds Ultrasound |
title | Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20radiomics%20for%20multiple%20primary%20prostate%20cancer%20biological%20characteristics%20prediction%20with%2018F-PSMA-1007%20PET:%20comparison%20among%20different%20volume%20segmentation%20thresholds&rft.jtitle=Radiologia%20medica&rft.au=Yao,%20Fei&rft.date=2022-10-01&rft.volume=127&rft.issue=10&rft.spage=1170&rft.epage=1178&rft.pages=1170-1178&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-022-01541-1&rft_dat=%3Cproquest_cross%3E2718225485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718225485&rft_id=info:pmid/&rfr_iscdi=true |