Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds

Background PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18 F-PSMA-1007 PET radiomics featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiologia medica 2022-10, Vol.127 (10), p.1170-1178
Hauptverfasser: Yao, Fei, Bian, Shuying, Zhu, Dongqin, Yuan, Yaping, Pan, Kehua, Pan, Zhifang, Feng, Xianghao, Tang, Kun, Yang, Yunjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1178
container_issue 10
container_start_page 1170
container_title Radiologia medica
container_volume 127
creator Yao, Fei
Bian, Shuying
Zhu, Dongqin
Yuan, Yaping
Pan, Kehua
Pan, Zhifang
Feng, Xianghao
Tang, Kun
Yang, Yunjun
description Background PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18 F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics. Methods One hundred and seventy-three PCa patients with complete preoperative 18 F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes. Results For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]). Conclusion The 18 F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.
doi_str_mv 10.1007/s11547-022-01541-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2707617201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718225485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</originalsourceid><addsrcrecordid>eNp9kc9qFjEUxQexYK19AVcBN26iN5n_7kppVWix0HY93MnczKRkks8kU_HhfDfz9SsoLlzdG_idw805RfFWwAcB0H6MQtRVy0FKDnkTXLwojkUnG970Xfnyr_1V8TrGB4AKBPTHxa9rVItxxCxhcMbNfMRIEws4Gb8aFZn2ga2bTWZnie2CWTH8zNPHhImYQqcosNF462ej0DK1YECVKJiY9vpdoMmoZLxjP0xamOgu-c3t9RnfH85uLu4-MeXXHWY-I7h6N7PJaE2BXGKP3m4rsUjzmp_4ZJOWQHHxdopviiONNtLp8zwp7i8v7s6_8Ktvn7-en11xJTuZOIJohNLU9EJT14xlP-III0FLfU4BZV_W0JfQVlXdqUpjpUXTjgI0iK6uVHlSvD_45n9_3yimYTVRkbXoyG9xkC20jWgliIy--wd98Ftw-bpM5RZkXXV1puSBUjnIGEgPz8kOAoZ9MMOh0SE3Ojw1Ouyty4MoZtjNFP5Y_0f1G5I4ppM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718225485</pqid></control><display><type>article</type><title>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</title><source>SpringerLink Journals</source><creator>Yao, Fei ; Bian, Shuying ; Zhu, Dongqin ; Yuan, Yaping ; Pan, Kehua ; Pan, Zhifang ; Feng, Xianghao ; Tang, Kun ; Yang, Yunjun</creator><creatorcontrib>Yao, Fei ; Bian, Shuying ; Zhu, Dongqin ; Yuan, Yaping ; Pan, Kehua ; Pan, Zhifang ; Feng, Xianghao ; Tang, Kun ; Yang, Yunjun</creatorcontrib><description>Background PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18 F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics. Methods One hundred and seventy-three PCa patients with complete preoperative 18 F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes. Results For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]). Conclusion The 18 F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-022-01541-1</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Diagnostic Radiology ; Feature extraction ; Imaging ; Interventional Radiology ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Neuroradiology ; Oncology Imaging ; Performance indices ; Performance prediction ; Prediction models ; Prostate cancer ; Radiology ; Radiomics ; Support vector machines ; Thresholds ; Ultrasound</subject><ispartof>Radiologia medica, 2022-10, Vol.127 (10), p.1170-1178</ispartof><rights>Italian Society of Medical Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</citedby><cites>FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</cites><orcidid>0000-0003-2080-2417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11547-022-01541-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11547-022-01541-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yao, Fei</creatorcontrib><creatorcontrib>Bian, Shuying</creatorcontrib><creatorcontrib>Zhu, Dongqin</creatorcontrib><creatorcontrib>Yuan, Yaping</creatorcontrib><creatorcontrib>Pan, Kehua</creatorcontrib><creatorcontrib>Pan, Zhifang</creatorcontrib><creatorcontrib>Feng, Xianghao</creatorcontrib><creatorcontrib>Tang, Kun</creatorcontrib><creatorcontrib>Yang, Yunjun</creatorcontrib><title>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><description>Background PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18 F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics. Methods One hundred and seventy-three PCa patients with complete preoperative 18 F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes. Results For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]). Conclusion The 18 F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.</description><subject>Diagnostic Radiology</subject><subject>Feature extraction</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neuroradiology</subject><subject>Oncology Imaging</subject><subject>Performance indices</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Prostate cancer</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Support vector machines</subject><subject>Thresholds</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qFjEUxQexYK19AVcBN26iN5n_7kppVWix0HY93MnczKRkks8kU_HhfDfz9SsoLlzdG_idw805RfFWwAcB0H6MQtRVy0FKDnkTXLwojkUnG970Xfnyr_1V8TrGB4AKBPTHxa9rVItxxCxhcMbNfMRIEws4Gb8aFZn2ga2bTWZnie2CWTH8zNPHhImYQqcosNF462ej0DK1YECVKJiY9vpdoMmoZLxjP0xamOgu-c3t9RnfH85uLu4-MeXXHWY-I7h6N7PJaE2BXGKP3m4rsUjzmp_4ZJOWQHHxdopviiONNtLp8zwp7i8v7s6_8Ktvn7-en11xJTuZOIJohNLU9EJT14xlP-III0FLfU4BZV_W0JfQVlXdqUpjpUXTjgI0iK6uVHlSvD_45n9_3yimYTVRkbXoyG9xkC20jWgliIy--wd98Ftw-bpM5RZkXXV1puSBUjnIGEgPz8kOAoZ9MMOh0SE3Ojw1Ouyty4MoZtjNFP5Y_0f1G5I4ppM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yao, Fei</creator><creator>Bian, Shuying</creator><creator>Zhu, Dongqin</creator><creator>Yuan, Yaping</creator><creator>Pan, Kehua</creator><creator>Pan, Zhifang</creator><creator>Feng, Xianghao</creator><creator>Tang, Kun</creator><creator>Yang, Yunjun</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2080-2417</orcidid></search><sort><creationdate>20221001</creationdate><title>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</title><author>Yao, Fei ; Bian, Shuying ; Zhu, Dongqin ; Yuan, Yaping ; Pan, Kehua ; Pan, Zhifang ; Feng, Xianghao ; Tang, Kun ; Yang, Yunjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-a0161cfe691fe86b39bab0be07e9109a2935093074458c4fa4f167b10f01854c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diagnostic Radiology</topic><topic>Feature extraction</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neuroradiology</topic><topic>Oncology Imaging</topic><topic>Performance indices</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Prostate cancer</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Support vector machines</topic><topic>Thresholds</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Fei</creatorcontrib><creatorcontrib>Bian, Shuying</creatorcontrib><creatorcontrib>Zhu, Dongqin</creatorcontrib><creatorcontrib>Yuan, Yaping</creatorcontrib><creatorcontrib>Pan, Kehua</creatorcontrib><creatorcontrib>Pan, Zhifang</creatorcontrib><creatorcontrib>Feng, Xianghao</creatorcontrib><creatorcontrib>Tang, Kun</creatorcontrib><creatorcontrib>Yang, Yunjun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Fei</au><au>Bian, Shuying</au><au>Zhu, Dongqin</au><au>Yuan, Yaping</au><au>Pan, Kehua</au><au>Pan, Zhifang</au><au>Feng, Xianghao</au><au>Tang, Kun</au><au>Yang, Yunjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>127</volume><issue>10</issue><spage>1170</spage><epage>1178</epage><pages>1170-1178</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Background PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18 F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics. Methods One hundred and seventy-three PCa patients with complete preoperative 18 F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes. Results For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]). Conclusion The 18 F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s11547-022-01541-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2080-2417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1826-6983
ispartof Radiologia medica, 2022-10, Vol.127 (10), p.1170-1178
issn 1826-6983
0033-8362
1826-6983
language eng
recordid cdi_proquest_miscellaneous_2707617201
source SpringerLink Journals
subjects Diagnostic Radiology
Feature extraction
Imaging
Interventional Radiology
Machine learning
Medicine
Medicine & Public Health
Neuroradiology
Oncology Imaging
Performance indices
Performance prediction
Prediction models
Prostate cancer
Radiology
Radiomics
Support vector machines
Thresholds
Ultrasound
title Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20radiomics%20for%20multiple%20primary%20prostate%20cancer%20biological%20characteristics%20prediction%20with%2018F-PSMA-1007%20PET:%20comparison%20among%20different%20volume%20segmentation%20thresholds&rft.jtitle=Radiologia%20medica&rft.au=Yao,%20Fei&rft.date=2022-10-01&rft.volume=127&rft.issue=10&rft.spage=1170&rft.epage=1178&rft.pages=1170-1178&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-022-01541-1&rft_dat=%3Cproquest_cross%3E2718225485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718225485&rft_id=info:pmid/&rfr_iscdi=true