Policy impacts of statistical uncertainty and privacy

Funding formula reform may help address unequal impacts of uncertainty from data error and privacy protections Differential privacy ( 1 ) is an increasingly popular tool for preserving individuals’ privacy by adding statistical uncertainty when sharing sensitive data. Its introduction into US Census...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-08, Vol.377 (6609), p.928-931
Hauptverfasser: Steed, Ryan, Liu, Terrance, Wu, Zhiwei Steven, Acquisti, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 931
container_issue 6609
container_start_page 928
container_title Science (American Association for the Advancement of Science)
container_volume 377
creator Steed, Ryan
Liu, Terrance
Wu, Zhiwei Steven
Acquisti, Alessandro
description Funding formula reform may help address unequal impacts of uncertainty from data error and privacy protections Differential privacy ( 1 ) is an increasingly popular tool for preserving individuals’ privacy by adding statistical uncertainty when sharing sensitive data. Its introduction into US Census Bureau operations ( 2 ), however, has been controversial. Scholars, politicians, and activists have raised concerns about the integrity of census-guided democratic processes, from redistricting to voting rights. The debate raises important issues, yet most analyses of trade-offs around differential privacy overlook deeper uncertainties in census data ( 3 ). To illustrate, we examine how education policies that leverage census data misallocate funding because of statistical uncertainty, comparing the impacts of quantified data error and of a possible differentially private mechanism. We find that misallocations due to our differentially private mechanism occur on the margin of much larger misallocations due to existing data error that particularly disadvantage marginalized groups. But, we also find that policy reforms can reduce the disparate impacts of both data error and privacy mechanisms.
doi_str_mv 10.1126/science.abq4481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2707606961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707592007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-aa7a72409bd0ec11cad1614e42cbe9cf4976d31b596d059584c9c9dc07948eb33</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUws0ZiYQm9jl_xiCpeUiUYYLacG0dylSat7SDl32NoJ6Y7nE9H536E3FJ4oLSSq4jeDegebHPgvKZnZEFBi1JXwM7JAoDJsgYlLslVjFuAnGm2IOJj7D3Ohd_tLaZYjF0Rk00-Jo-2L6bcGJL1Q5oLO7TFPvhvi_M1uehsH93N6S7J1_PT5_q13Ly_vK0fNyUyqFJprbKq4qCbFhxSiralknLHK2ycxo5rJVtGG6FlC0KLmqNG3SIozWvXMLYk98fefRgPk4vJ7HxE1_d2cOMUTaVASZBa0oze_UO34xSGvO6PEtkDqEytjhSGMcbgOpM_2tkwGwrmV6M5aTQnjewHerJnhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707592007</pqid></control><display><type>article</type><title>Policy impacts of statistical uncertainty and privacy</title><source>American Association for the Advancement of Science</source><creator>Steed, Ryan ; Liu, Terrance ; Wu, Zhiwei Steven ; Acquisti, Alessandro</creator><creatorcontrib>Steed, Ryan ; Liu, Terrance ; Wu, Zhiwei Steven ; Acquisti, Alessandro</creatorcontrib><description>Funding formula reform may help address unequal impacts of uncertainty from data error and privacy protections Differential privacy ( 1 ) is an increasingly popular tool for preserving individuals’ privacy by adding statistical uncertainty when sharing sensitive data. Its introduction into US Census Bureau operations ( 2 ), however, has been controversial. Scholars, politicians, and activists have raised concerns about the integrity of census-guided democratic processes, from redistricting to voting rights. The debate raises important issues, yet most analyses of trade-offs around differential privacy overlook deeper uncertainties in census data ( 3 ). To illustrate, we examine how education policies that leverage census data misallocate funding because of statistical uncertainty, comparing the impacts of quantified data error and of a possible differentially private mechanism. We find that misallocations due to our differentially private mechanism occur on the margin of much larger misallocations due to existing data error that particularly disadvantage marginalized groups. But, we also find that policy reforms can reduce the disparate impacts of both data error and privacy mechanisms.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq4481</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Census ; Errors ; Marginalized groups ; Privacy ; Statistics ; Uncertainty</subject><ispartof>Science (American Association for the Advancement of Science), 2022-08, Vol.377 (6609), p.928-931</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-aa7a72409bd0ec11cad1614e42cbe9cf4976d31b596d059584c9c9dc07948eb33</citedby><cites>FETCH-LOGICAL-c302t-aa7a72409bd0ec11cad1614e42cbe9cf4976d31b596d059584c9c9dc07948eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids></links><search><creatorcontrib>Steed, Ryan</creatorcontrib><creatorcontrib>Liu, Terrance</creatorcontrib><creatorcontrib>Wu, Zhiwei Steven</creatorcontrib><creatorcontrib>Acquisti, Alessandro</creatorcontrib><title>Policy impacts of statistical uncertainty and privacy</title><title>Science (American Association for the Advancement of Science)</title><description>Funding formula reform may help address unequal impacts of uncertainty from data error and privacy protections Differential privacy ( 1 ) is an increasingly popular tool for preserving individuals’ privacy by adding statistical uncertainty when sharing sensitive data. Its introduction into US Census Bureau operations ( 2 ), however, has been controversial. Scholars, politicians, and activists have raised concerns about the integrity of census-guided democratic processes, from redistricting to voting rights. The debate raises important issues, yet most analyses of trade-offs around differential privacy overlook deeper uncertainties in census data ( 3 ). To illustrate, we examine how education policies that leverage census data misallocate funding because of statistical uncertainty, comparing the impacts of quantified data error and of a possible differentially private mechanism. We find that misallocations due to our differentially private mechanism occur on the margin of much larger misallocations due to existing data error that particularly disadvantage marginalized groups. But, we also find that policy reforms can reduce the disparate impacts of both data error and privacy mechanisms.</description><subject>Census</subject><subject>Errors</subject><subject>Marginalized groups</subject><subject>Privacy</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EEqUws0ZiYQm9jl_xiCpeUiUYYLacG0dylSat7SDl32NoJ6Y7nE9H536E3FJ4oLSSq4jeDegebHPgvKZnZEFBi1JXwM7JAoDJsgYlLslVjFuAnGm2IOJj7D3Ohd_tLaZYjF0Rk00-Jo-2L6bcGJL1Q5oLO7TFPvhvi_M1uehsH93N6S7J1_PT5_q13Ly_vK0fNyUyqFJprbKq4qCbFhxSiralknLHK2ycxo5rJVtGG6FlC0KLmqNG3SIozWvXMLYk98fefRgPk4vJ7HxE1_d2cOMUTaVASZBa0oze_UO34xSGvO6PEtkDqEytjhSGMcbgOpM_2tkwGwrmV6M5aTQnjewHerJnhA</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Steed, Ryan</creator><creator>Liu, Terrance</creator><creator>Wu, Zhiwei Steven</creator><creator>Acquisti, Alessandro</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220826</creationdate><title>Policy impacts of statistical uncertainty and privacy</title><author>Steed, Ryan ; Liu, Terrance ; Wu, Zhiwei Steven ; Acquisti, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-aa7a72409bd0ec11cad1614e42cbe9cf4976d31b596d059584c9c9dc07948eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Census</topic><topic>Errors</topic><topic>Marginalized groups</topic><topic>Privacy</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steed, Ryan</creatorcontrib><creatorcontrib>Liu, Terrance</creatorcontrib><creatorcontrib>Wu, Zhiwei Steven</creatorcontrib><creatorcontrib>Acquisti, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steed, Ryan</au><au>Liu, Terrance</au><au>Wu, Zhiwei Steven</au><au>Acquisti, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Policy impacts of statistical uncertainty and privacy</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2022-08-26</date><risdate>2022</risdate><volume>377</volume><issue>6609</issue><spage>928</spage><epage>931</epage><pages>928-931</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Funding formula reform may help address unequal impacts of uncertainty from data error and privacy protections Differential privacy ( 1 ) is an increasingly popular tool for preserving individuals’ privacy by adding statistical uncertainty when sharing sensitive data. Its introduction into US Census Bureau operations ( 2 ), however, has been controversial. Scholars, politicians, and activists have raised concerns about the integrity of census-guided democratic processes, from redistricting to voting rights. The debate raises important issues, yet most analyses of trade-offs around differential privacy overlook deeper uncertainties in census data ( 3 ). To illustrate, we examine how education policies that leverage census data misallocate funding because of statistical uncertainty, comparing the impacts of quantified data error and of a possible differentially private mechanism. We find that misallocations due to our differentially private mechanism occur on the margin of much larger misallocations due to existing data error that particularly disadvantage marginalized groups. But, we also find that policy reforms can reduce the disparate impacts of both data error and privacy mechanisms.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abq4481</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-08, Vol.377 (6609), p.928-931
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2707606961
source American Association for the Advancement of Science
subjects Census
Errors
Marginalized groups
Privacy
Statistics
Uncertainty
title Policy impacts of statistical uncertainty and privacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Policy%20impacts%20of%20statistical%20uncertainty%20and%20privacy&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Steed,%20Ryan&rft.date=2022-08-26&rft.volume=377&rft.issue=6609&rft.spage=928&rft.epage=931&rft.pages=928-931&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq4481&rft_dat=%3Cproquest_cross%3E2707592007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707592007&rft_id=info:pmid/&rfr_iscdi=true