Buoyant gravity currents along a sloping bottom in a rotating fluid

The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2002-08, Vol.464, p.251-278
Hauptverfasser: LENTZ, STEVEN J., HELFRICH, KARL R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue
container_start_page 251
container_title Journal of fluid mechanics
container_volume 464
creator LENTZ, STEVEN J.
HELFRICH, KARL R.
description The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g′, Coriolis frequency f, and bottom slope α. The nose propagation speed is cp ∼ cw/ (1 + cw/cα) and the width of the buoyant gravity current is Wp ∼ cw/ f(1 + cw/cα), where cw = (2Qg′ f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and cα = αg/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/cα, which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/cα → 0) or approaches the slope-controlled limit (cw/cα → ∞). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/cα = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.
doi_str_mv 10.1017/S0022112002008868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27072181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002008868</cupid><sourcerecordid>27072181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-f2837e4007c02c4a2376687292dd1b524a8321410a95a3c3315d60eb5135c013</originalsourceid><addsrcrecordid>eNqFkN9rFDEQx4MoeFb_AN8WRN9WZ_J7H_WwtVAQaWl9C7ls9kjd25xJVnr_fXPcYUWRPs0w38_MfGcIeY3wHgHVh0sAShFpDQBaS_2ELJDLrlWSi6dksZfbvf6cvMj5FgAZdGpBlp_muLNTadbJ_gpl17g5JT-V3NgxTuvGNnmM21CzVSwlbpow1VqKxZZ9cRjn0L8kzwY7Zv_qGE_I1ennq-WX9uLr2fny40XruNalHahmynMA5YA6bilTUmpFO9r3uBKUW80ocgTbCcscYyh6CX4lkAlX_Z6Qd4ex2xR_zj4XswnZ-XG0k49zNlSBoqgfB1GLrqt7K_jmL_A2zmmqN5jqQ3MmO64qhQfKpZhz8oPZprCxaWcQzP755p_n1563x8k2OzsOyU4u5IdGpkEw5JVrD1zIxd_91m36YaRiShh59s1c3lyf3iyRme-VZ0cvdrNKoV_7Pyz_1809_iOe_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418436947</pqid></control><display><type>article</type><title>Buoyant gravity currents along a sloping bottom in a rotating fluid</title><source>Cambridge University Press Journals Complete</source><creator>LENTZ, STEVEN J. ; HELFRICH, KARL R.</creator><creatorcontrib>LENTZ, STEVEN J. ; HELFRICH, KARL R.</creatorcontrib><description>The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g′, Coriolis frequency f, and bottom slope α. The nose propagation speed is cp ∼ cw/ (1 + cw/cα) and the width of the buoyant gravity current is Wp ∼ cw/ f(1 + cw/cα), where cw = (2Qg′ f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and cα = αg/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/cα, which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/cα → 0) or approaches the slope-controlled limit (cw/cα → ∞). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/cα = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002008868</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Flow characteristics ; Fluid mechanics ; Gravity ; Mathematical models ; Other topics ; Physics of the oceans ; Rivers</subject><ispartof>Journal of fluid mechanics, 2002-08, Vol.464, p.251-278</ispartof><rights>2002 Cambridge University Press</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Cambridge University Press Aug 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-f2837e4007c02c4a2376687292dd1b524a8321410a95a3c3315d60eb5135c013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002008868/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13805314$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LENTZ, STEVEN J.</creatorcontrib><creatorcontrib>HELFRICH, KARL R.</creatorcontrib><title>Buoyant gravity currents along a sloping bottom in a rotating fluid</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g′, Coriolis frequency f, and bottom slope α. The nose propagation speed is cp ∼ cw/ (1 + cw/cα) and the width of the buoyant gravity current is Wp ∼ cw/ f(1 + cw/cα), where cw = (2Qg′ f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and cα = αg/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/cα, which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/cα → 0) or approaches the slope-controlled limit (cw/cα → ∞). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/cα = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.</description><subject>Buoyancy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flow characteristics</subject><subject>Fluid mechanics</subject><subject>Gravity</subject><subject>Mathematical models</subject><subject>Other topics</subject><subject>Physics of the oceans</subject><subject>Rivers</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkN9rFDEQx4MoeFb_AN8WRN9WZ_J7H_WwtVAQaWl9C7ls9kjd25xJVnr_fXPcYUWRPs0w38_MfGcIeY3wHgHVh0sAShFpDQBaS_2ELJDLrlWSi6dksZfbvf6cvMj5FgAZdGpBlp_muLNTadbJ_gpl17g5JT-V3NgxTuvGNnmM21CzVSwlbpow1VqKxZZ9cRjn0L8kzwY7Zv_qGE_I1ennq-WX9uLr2fny40XruNalHahmynMA5YA6bilTUmpFO9r3uBKUW80ocgTbCcscYyh6CX4lkAlX_Z6Qd4ex2xR_zj4XswnZ-XG0k49zNlSBoqgfB1GLrqt7K_jmL_A2zmmqN5jqQ3MmO64qhQfKpZhz8oPZprCxaWcQzP755p_n1563x8k2OzsOyU4u5IdGpkEw5JVrD1zIxd_91m36YaRiShh59s1c3lyf3iyRme-VZ0cvdrNKoV_7Pyz_1809_iOe_g</recordid><startdate>20020810</startdate><enddate>20020810</enddate><creator>LENTZ, STEVEN J.</creator><creator>HELFRICH, KARL R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>7TN</scope><scope>KL.</scope></search><sort><creationdate>20020810</creationdate><title>Buoyant gravity currents along a sloping bottom in a rotating fluid</title><author>LENTZ, STEVEN J. ; HELFRICH, KARL R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-f2837e4007c02c4a2376687292dd1b524a8321410a95a3c3315d60eb5135c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Buoyancy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flow characteristics</topic><topic>Fluid mechanics</topic><topic>Gravity</topic><topic>Mathematical models</topic><topic>Other topics</topic><topic>Physics of the oceans</topic><topic>Rivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LENTZ, STEVEN J.</creatorcontrib><creatorcontrib>HELFRICH, KARL R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LENTZ, STEVEN J.</au><au>HELFRICH, KARL R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buoyant gravity currents along a sloping bottom in a rotating fluid</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2002-08-10</date><risdate>2002</risdate><volume>464</volume><spage>251</spage><epage>278</epage><pages>251-278</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g′, Coriolis frequency f, and bottom slope α. The nose propagation speed is cp ∼ cw/ (1 + cw/cα) and the width of the buoyant gravity current is Wp ∼ cw/ f(1 + cw/cα), where cw = (2Qg′ f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and cα = αg/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/cα, which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/cα → 0) or approaches the slope-controlled limit (cw/cα → ∞). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/cα = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002008868</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2002-08, Vol.464, p.251-278
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_27072181
source Cambridge University Press Journals Complete
subjects Buoyancy
Earth, ocean, space
Exact sciences and technology
External geophysics
Flow characteristics
Fluid mechanics
Gravity
Mathematical models
Other topics
Physics of the oceans
Rivers
title Buoyant gravity currents along a sloping bottom in a rotating fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buoyant%20gravity%20currents%20along%20a%20sloping%20bottom%20in%20a%20rotating%20fluid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=LENTZ,%20STEVEN%20J.&rft.date=2002-08-10&rft.volume=464&rft.spage=251&rft.epage=278&rft.pages=251-278&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002008868&rft_dat=%3Cproquest_cross%3E27072181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418436947&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002008868&rfr_iscdi=true