Buoyant gravity currents along a sloping bottom in a rotating fluid
The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized i...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2002-08, Vol.464, p.251-278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | |
container_start_page | 251 |
container_title | Journal of fluid mechanics |
container_volume | 464 |
creator | LENTZ, STEVEN J. HELFRICH, KARL R. |
description | The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to
geophysical applications such as river water entering the ocean. However, existing scaling theories are
limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A
scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of
buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q,
density anomaly g′, Coriolis frequency f, and bottom slope α. The nose
propagation speed is cp ∼ cw/
(1 + cw/cα) and the width of the buoyant gravity
current is Wp ∼ cw/
f(1 + cw/cα), where
cw = (2Qg′ f)1/4 is the nose propagation
speed in the vertical wall limit (steep bottom slope) and
cα = αg/f is the nose propagation speed
in the slope-controlled limit (small bottom slope). The key non-dimensional parameter
is cw/cα, which indicates whether the bottom slope
is steep enough to be considered a vertical wall
(cw/cα → 0) or approaches the
slope-controlled limit (cw/cα → ∞). The
scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom
slopes (cw/cα = 0.11–13.1). Additionally,
previous laboratory and numerical model results are reanalysed and shown to support the proposed
scaling theory. |
doi_str_mv | 10.1017/S0022112002008868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27072181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002008868</cupid><sourcerecordid>27072181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-f2837e4007c02c4a2376687292dd1b524a8321410a95a3c3315d60eb5135c013</originalsourceid><addsrcrecordid>eNqFkN9rFDEQx4MoeFb_AN8WRN9WZ_J7H_WwtVAQaWl9C7ls9kjd25xJVnr_fXPcYUWRPs0w38_MfGcIeY3wHgHVh0sAShFpDQBaS_2ELJDLrlWSi6dksZfbvf6cvMj5FgAZdGpBlp_muLNTadbJ_gpl17g5JT-V3NgxTuvGNnmM21CzVSwlbpow1VqKxZZ9cRjn0L8kzwY7Zv_qGE_I1ennq-WX9uLr2fny40XruNalHahmynMA5YA6bilTUmpFO9r3uBKUW80ocgTbCcscYyh6CX4lkAlX_Z6Qd4ex2xR_zj4XswnZ-XG0k49zNlSBoqgfB1GLrqt7K_jmL_A2zmmqN5jqQ3MmO64qhQfKpZhz8oPZprCxaWcQzP755p_n1563x8k2OzsOyU4u5IdGpkEw5JVrD1zIxd_91m36YaRiShh59s1c3lyf3iyRme-VZ0cvdrNKoV_7Pyz_1809_iOe_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418436947</pqid></control><display><type>article</type><title>Buoyant gravity currents along a sloping bottom in a rotating fluid</title><source>Cambridge University Press Journals Complete</source><creator>LENTZ, STEVEN J. ; HELFRICH, KARL R.</creator><creatorcontrib>LENTZ, STEVEN J. ; HELFRICH, KARL R.</creatorcontrib><description>The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to
geophysical applications such as river water entering the ocean. However, existing scaling theories are
limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A
scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of
buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q,
density anomaly g′, Coriolis frequency f, and bottom slope α. The nose
propagation speed is cp ∼ cw/
(1 + cw/cα) and the width of the buoyant gravity
current is Wp ∼ cw/
f(1 + cw/cα), where
cw = (2Qg′ f)1/4 is the nose propagation
speed in the vertical wall limit (steep bottom slope) and
cα = αg/f is the nose propagation speed
in the slope-controlled limit (small bottom slope). The key non-dimensional parameter
is cw/cα, which indicates whether the bottom slope
is steep enough to be considered a vertical wall
(cw/cα → 0) or approaches the
slope-controlled limit (cw/cα → ∞). The
scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom
slopes (cw/cα = 0.11–13.1). Additionally,
previous laboratory and numerical model results are reanalysed and shown to support the proposed
scaling theory.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002008868</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Flow characteristics ; Fluid mechanics ; Gravity ; Mathematical models ; Other topics ; Physics of the oceans ; Rivers</subject><ispartof>Journal of fluid mechanics, 2002-08, Vol.464, p.251-278</ispartof><rights>2002 Cambridge University Press</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Cambridge University Press Aug 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-f2837e4007c02c4a2376687292dd1b524a8321410a95a3c3315d60eb5135c013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002008868/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13805314$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LENTZ, STEVEN J.</creatorcontrib><creatorcontrib>HELFRICH, KARL R.</creatorcontrib><title>Buoyant gravity currents along a sloping bottom in a rotating fluid</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to
geophysical applications such as river water entering the ocean. However, existing scaling theories are
limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A
scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of
buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q,
density anomaly g′, Coriolis frequency f, and bottom slope α. The nose
propagation speed is cp ∼ cw/
(1 + cw/cα) and the width of the buoyant gravity
current is Wp ∼ cw/
f(1 + cw/cα), where
cw = (2Qg′ f)1/4 is the nose propagation
speed in the vertical wall limit (steep bottom slope) and
cα = αg/f is the nose propagation speed
in the slope-controlled limit (small bottom slope). The key non-dimensional parameter
is cw/cα, which indicates whether the bottom slope
is steep enough to be considered a vertical wall
(cw/cα → 0) or approaches the
slope-controlled limit (cw/cα → ∞). The
scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom
slopes (cw/cα = 0.11–13.1). Additionally,
previous laboratory and numerical model results are reanalysed and shown to support the proposed
scaling theory.</description><subject>Buoyancy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flow characteristics</subject><subject>Fluid mechanics</subject><subject>Gravity</subject><subject>Mathematical models</subject><subject>Other topics</subject><subject>Physics of the oceans</subject><subject>Rivers</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkN9rFDEQx4MoeFb_AN8WRN9WZ_J7H_WwtVAQaWl9C7ls9kjd25xJVnr_fXPcYUWRPs0w38_MfGcIeY3wHgHVh0sAShFpDQBaS_2ELJDLrlWSi6dksZfbvf6cvMj5FgAZdGpBlp_muLNTadbJ_gpl17g5JT-V3NgxTuvGNnmM21CzVSwlbpow1VqKxZZ9cRjn0L8kzwY7Zv_qGE_I1ennq-WX9uLr2fny40XruNalHahmynMA5YA6bilTUmpFO9r3uBKUW80ocgTbCcscYyh6CX4lkAlX_Z6Qd4ex2xR_zj4XswnZ-XG0k49zNlSBoqgfB1GLrqt7K_jmL_A2zmmqN5jqQ3MmO64qhQfKpZhz8oPZprCxaWcQzP755p_n1563x8k2OzsOyU4u5IdGpkEw5JVrD1zIxd_91m36YaRiShh59s1c3lyf3iyRme-VZ0cvdrNKoV_7Pyz_1809_iOe_g</recordid><startdate>20020810</startdate><enddate>20020810</enddate><creator>LENTZ, STEVEN J.</creator><creator>HELFRICH, KARL R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>7TN</scope><scope>KL.</scope></search><sort><creationdate>20020810</creationdate><title>Buoyant gravity currents along a sloping bottom in a rotating fluid</title><author>LENTZ, STEVEN J. ; HELFRICH, KARL R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-f2837e4007c02c4a2376687292dd1b524a8321410a95a3c3315d60eb5135c013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Buoyancy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flow characteristics</topic><topic>Fluid mechanics</topic><topic>Gravity</topic><topic>Mathematical models</topic><topic>Other topics</topic><topic>Physics of the oceans</topic><topic>Rivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LENTZ, STEVEN J.</creatorcontrib><creatorcontrib>HELFRICH, KARL R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LENTZ, STEVEN J.</au><au>HELFRICH, KARL R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buoyant gravity currents along a sloping bottom in a rotating fluid</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2002-08-10</date><risdate>2002</risdate><volume>464</volume><spage>251</spage><epage>278</epage><pages>251-278</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to
geophysical applications such as river water entering the ocean. However, existing scaling theories are
limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A
scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of
buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q,
density anomaly g′, Coriolis frequency f, and bottom slope α. The nose
propagation speed is cp ∼ cw/
(1 + cw/cα) and the width of the buoyant gravity
current is Wp ∼ cw/
f(1 + cw/cα), where
cw = (2Qg′ f)1/4 is the nose propagation
speed in the vertical wall limit (steep bottom slope) and
cα = αg/f is the nose propagation speed
in the slope-controlled limit (small bottom slope). The key non-dimensional parameter
is cw/cα, which indicates whether the bottom slope
is steep enough to be considered a vertical wall
(cw/cα → 0) or approaches the
slope-controlled limit (cw/cα → ∞). The
scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom
slopes (cw/cα = 0.11–13.1). Additionally,
previous laboratory and numerical model results are reanalysed and shown to support the proposed
scaling theory.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002008868</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2002-08, Vol.464, p.251-278 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_27072181 |
source | Cambridge University Press Journals Complete |
subjects | Buoyancy Earth, ocean, space Exact sciences and technology External geophysics Flow characteristics Fluid mechanics Gravity Mathematical models Other topics Physics of the oceans Rivers |
title | Buoyant gravity currents along a sloping bottom in a rotating fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buoyant%20gravity%20currents%20along%20a%20sloping%20bottom%20in%20a%20rotating%20fluid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=LENTZ,%20STEVEN%20J.&rft.date=2002-08-10&rft.volume=464&rft.spage=251&rft.epage=278&rft.pages=251-278&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002008868&rft_dat=%3Cproquest_cross%3E27072181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418436947&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002008868&rfr_iscdi=true |