Completeness of type assignment systems with intersection, union, and type quantifiers
This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all state...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2002-02, Vol.272 (1), p.341-398 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 398 |
---|---|
container_issue | 1 |
container_start_page | 341 |
container_title | Theoretical computer science |
container_volume | 272 |
creator | Yokouchi, Hirofumi |
description | This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them. |
doi_str_mv | 10.1016/S0304-3975(00)00356-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27070147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439750000356X</els_id><sourcerecordid>27070147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKErUbB60zRJuxIZfIHgwgezC2mTaqRNO72pMv_ezlTcerlwNuccOB8hxxQuKFBx-QwM0pjlkp8CnAEwLuLlDpnRTOZxkuTpLpn9WfbJAeInjMelmJG3Rdt0tQ3WW8SoraKw7mykEd27b6wPEa4x2Aajbxc-IueD7dGWwbX-PBr8VrQ3U2o1aB9c5UbLIdmrdI326Ffn5PX25mVxHz8-3T0srh_jkmU8xNRAVlUS8kSWDDKjs4IlUkCuU0PHLxIhU6MLybNU51luyooLUWQsZcAFLdicnEy9Xd-uBotBNQ5LW9fa23ZAlUiQQFM5GvlkLPsWsbeV6nrX6H6tKKgNRbWlqDaIFIDaUlTLMXc15ey44mucprB01pfWuH7koEzr_mn4AZOiepQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27070147</pqid></control><display><type>article</type><title>Completeness of type assignment systems with intersection, union, and type quantifiers</title><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Yokouchi, Hirofumi</creator><creatorcontrib>Yokouchi, Hirofumi</creatorcontrib><description>This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00356-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cut-elimination ; Kripke models ; Lambda calculus ; Sequent calculus ; Type systems</subject><ispartof>Theoretical computer science, 2002-02, Vol.272 (1), p.341-398</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</citedby><cites>FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030439750000356X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yokouchi, Hirofumi</creatorcontrib><title>Completeness of type assignment systems with intersection, union, and type quantifiers</title><title>Theoretical computer science</title><description>This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.</description><subject>Cut-elimination</subject><subject>Kripke models</subject><subject>Lambda calculus</subject><subject>Sequent calculus</subject><subject>Type systems</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKErUbB60zRJuxIZfIHgwgezC2mTaqRNO72pMv_ezlTcerlwNuccOB8hxxQuKFBx-QwM0pjlkp8CnAEwLuLlDpnRTOZxkuTpLpn9WfbJAeInjMelmJG3Rdt0tQ3WW8SoraKw7mykEd27b6wPEa4x2Aajbxc-IueD7dGWwbX-PBr8VrQ3U2o1aB9c5UbLIdmrdI326Ffn5PX25mVxHz8-3T0srh_jkmU8xNRAVlUS8kSWDDKjs4IlUkCuU0PHLxIhU6MLybNU51luyooLUWQsZcAFLdicnEy9Xd-uBotBNQ5LW9fa23ZAlUiQQFM5GvlkLPsWsbeV6nrX6H6tKKgNRbWlqDaIFIDaUlTLMXc15ey44mucprB01pfWuH7koEzr_mn4AZOiepQ</recordid><startdate>20020206</startdate><enddate>20020206</enddate><creator>Yokouchi, Hirofumi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020206</creationdate><title>Completeness of type assignment systems with intersection, union, and type quantifiers</title><author>Yokouchi, Hirofumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Cut-elimination</topic><topic>Kripke models</topic><topic>Lambda calculus</topic><topic>Sequent calculus</topic><topic>Type systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokouchi, Hirofumi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokouchi, Hirofumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completeness of type assignment systems with intersection, union, and type quantifiers</atitle><jtitle>Theoretical computer science</jtitle><date>2002-02-06</date><risdate>2002</risdate><volume>272</volume><issue>1</issue><spage>341</spage><epage>398</epage><pages>341-398</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00356-X</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2002-02, Vol.272 (1), p.341-398 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_27070147 |
source | Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Cut-elimination Kripke models Lambda calculus Sequent calculus Type systems |
title | Completeness of type assignment systems with intersection, union, and type quantifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completeness%20of%20type%20assignment%20systems%20with%20intersection,%20union,%20and%20type%20quantifiers&rft.jtitle=Theoretical%20computer%20science&rft.au=Yokouchi,%20Hirofumi&rft.date=2002-02-06&rft.volume=272&rft.issue=1&rft.spage=341&rft.epage=398&rft.pages=341-398&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(00)00356-X&rft_dat=%3Cproquest_cross%3E27070147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27070147&rft_id=info:pmid/&rft_els_id=S030439750000356X&rfr_iscdi=true |