Completeness of type assignment systems with intersection, union, and type quantifiers

This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2002-02, Vol.272 (1), p.341-398
1. Verfasser: Yokouchi, Hirofumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue 1
container_start_page 341
container_title Theoretical computer science
container_volume 272
creator Yokouchi, Hirofumi
description This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.
doi_str_mv 10.1016/S0304-3975(00)00356-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27070147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439750000356X</els_id><sourcerecordid>27070147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKErUbB60zRJuxIZfIHgwgezC2mTaqRNO72pMv_ezlTcerlwNuccOB8hxxQuKFBx-QwM0pjlkp8CnAEwLuLlDpnRTOZxkuTpLpn9WfbJAeInjMelmJG3Rdt0tQ3WW8SoraKw7mykEd27b6wPEa4x2Aajbxc-IueD7dGWwbX-PBr8VrQ3U2o1aB9c5UbLIdmrdI326Ffn5PX25mVxHz8-3T0srh_jkmU8xNRAVlUS8kSWDDKjs4IlUkCuU0PHLxIhU6MLybNU51luyooLUWQsZcAFLdicnEy9Xd-uBotBNQ5LW9fa23ZAlUiQQFM5GvlkLPsWsbeV6nrX6H6tKKgNRbWlqDaIFIDaUlTLMXc15ey44mucprB01pfWuH7koEzr_mn4AZOiepQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27070147</pqid></control><display><type>article</type><title>Completeness of type assignment systems with intersection, union, and type quantifiers</title><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Yokouchi, Hirofumi</creator><creatorcontrib>Yokouchi, Hirofumi</creatorcontrib><description>This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00356-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cut-elimination ; Kripke models ; Lambda calculus ; Sequent calculus ; Type systems</subject><ispartof>Theoretical computer science, 2002-02, Vol.272 (1), p.341-398</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</citedby><cites>FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030439750000356X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yokouchi, Hirofumi</creatorcontrib><title>Completeness of type assignment systems with intersection, union, and type quantifiers</title><title>Theoretical computer science</title><description>This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.</description><subject>Cut-elimination</subject><subject>Kripke models</subject><subject>Lambda calculus</subject><subject>Sequent calculus</subject><subject>Type systems</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKErUbB60zRJuxIZfIHgwgezC2mTaqRNO72pMv_ezlTcerlwNuccOB8hxxQuKFBx-QwM0pjlkp8CnAEwLuLlDpnRTOZxkuTpLpn9WfbJAeInjMelmJG3Rdt0tQ3WW8SoraKw7mykEd27b6wPEa4x2Aajbxc-IueD7dGWwbX-PBr8VrQ3U2o1aB9c5UbLIdmrdI326Ffn5PX25mVxHz8-3T0srh_jkmU8xNRAVlUS8kSWDDKjs4IlUkCuU0PHLxIhU6MLybNU51luyooLUWQsZcAFLdicnEy9Xd-uBotBNQ5LW9fa23ZAlUiQQFM5GvlkLPsWsbeV6nrX6H6tKKgNRbWlqDaIFIDaUlTLMXc15ey44mucprB01pfWuH7koEzr_mn4AZOiepQ</recordid><startdate>20020206</startdate><enddate>20020206</enddate><creator>Yokouchi, Hirofumi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020206</creationdate><title>Completeness of type assignment systems with intersection, union, and type quantifiers</title><author>Yokouchi, Hirofumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1d08ff70927c308da8b327609a4d14d1b2674dab7584a989dcf566b83430561b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Cut-elimination</topic><topic>Kripke models</topic><topic>Lambda calculus</topic><topic>Sequent calculus</topic><topic>Type systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokouchi, Hirofumi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokouchi, Hirofumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completeness of type assignment systems with intersection, union, and type quantifiers</atitle><jtitle>Theoretical computer science</jtitle><date>2002-02-06</date><risdate>2002</risdate><volume>272</volume><issue>1</issue><spage>341</spage><epage>398</epage><pages>341-398</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>This paper develops type assignment systems with intersection and union types, and type quantifiers. We show that the known system for these types is not semantically complete. However, the following two hold for a certain class of typing statements, called stable statements, which include all statements without type quantifier: (1) the validity of stable statements for Kripke models is equivalent to that for standard models, (2) if we add two axioms expressing the distributive laws of intersection over union and existential-type quantifier, then the resulting system is complete for Kripke models. As a consequence, the known system with the axioms for distributive laws is complete for standard models if we restrict statements to stable ones. All the results are obtained in a systematic way with sequent-style formulations of type assignment and the cut-elimination property for them.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00356-X</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2002-02, Vol.272 (1), p.341-398
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_27070147
source Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Cut-elimination
Kripke models
Lambda calculus
Sequent calculus
Type systems
title Completeness of type assignment systems with intersection, union, and type quantifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completeness%20of%20type%20assignment%20systems%20with%20intersection,%20union,%20and%20type%20quantifiers&rft.jtitle=Theoretical%20computer%20science&rft.au=Yokouchi,%20Hirofumi&rft.date=2002-02-06&rft.volume=272&rft.issue=1&rft.spage=341&rft.epage=398&rft.pages=341-398&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(00)00356-X&rft_dat=%3Cproquest_cross%3E27070147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27070147&rft_id=info:pmid/&rft_els_id=S030439750000356X&rfr_iscdi=true