Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2002-04, Vol.124 (2), p.167-175
Hauptverfasser: Zess, G. A, Thole, K. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 167
container_title Journal of turbomachinery
container_volume 124
creator Zess, G. A
Thole, K. A
description With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.
doi_str_mv 10.1115/1.1460914
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27068786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27068786</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-f0423c9b38df3911f40c87c97946e002e18239a3c9a02e50bc699f215ccf1fd13</originalsourceid><addsrcrecordid>eNpFkL1PwzAQxS0EEqUwMLN4AYkhxRc7iT2ikhakSiwtYrOujl0F5Ys4QfDf49JKTPeh3z3de4RcA5sBQPIAMxApUyBOyASSWEZSMXZKJkxKFSVMvJ-TC-8_GAPOEzEhdt7W3TjgULYNVvTJ-nLXUGwKmn93ti9r2wxhn39hNf5BtHV048tmR5GuLBb7Li92li7KqrIDDQTSJXq6Hvtt2Vj6ho29JGcOK2-vjnVKNot8PX-OVq_Ll_njKkLO5BA5JmJu1JbLwnEF4AQzMjMqUyK1jMUWZMwVBgTDkLCtSZVyMSTGOHAF8Cm5O-h2ffs5Wj_ouvTGVlX4oR29jjOWykymAbw_gKZvve-t013wiv2PBqb3QWrQxyADe3sURW-wcj02pvT_BzyNU6FU4G4OHPra6o927EOiXguRqmDrF9RKei4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27068786</pqid></control><display><type>article</type><title>Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane</title><source>ASME Transactions Journals (Current)</source><creator>Zess, G. A ; Thole, K. A</creator><creatorcontrib>Zess, G. A ; Thole, K. A</creatorcontrib><description>With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.</description><identifier>ISSN: 0889-504X</identifier><identifier>EISSN: 1528-8900</identifier><identifier>DOI: 10.1115/1.1460914</identifier><identifier>CODEN: JOTUEI</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Continuous cycle engines: steam and gas turbines, jet engines ; Engines and turbines ; Exact sciences and technology ; Mechanical engineering. Machine design</subject><ispartof>Journal of turbomachinery, 2002-04, Vol.124 (2), p.167-175</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a308t-f0423c9b38df3911f40c87c97946e002e18239a3c9a02e50bc699f215ccf1fd13</citedby><cites>FETCH-LOGICAL-a308t-f0423c9b38df3911f40c87c97946e002e18239a3c9a02e50bc699f215ccf1fd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13626499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zess, G. A</creatorcontrib><creatorcontrib>Thole, K. A</creatorcontrib><title>Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane</title><title>Journal of turbomachinery</title><addtitle>J. Turbomach</addtitle><description>With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.</description><subject>Applied sciences</subject><subject>Continuous cycle engines: steam and gas turbines, jet engines</subject><subject>Engines and turbines</subject><subject>Exact sciences and technology</subject><subject>Mechanical engineering. Machine design</subject><issn>0889-504X</issn><issn>1528-8900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFkL1PwzAQxS0EEqUwMLN4AYkhxRc7iT2ikhakSiwtYrOujl0F5Ys4QfDf49JKTPeh3z3de4RcA5sBQPIAMxApUyBOyASSWEZSMXZKJkxKFSVMvJ-TC-8_GAPOEzEhdt7W3TjgULYNVvTJ-nLXUGwKmn93ti9r2wxhn39hNf5BtHV048tmR5GuLBb7Li92li7KqrIDDQTSJXq6Hvtt2Vj6ho29JGcOK2-vjnVKNot8PX-OVq_Ll_njKkLO5BA5JmJu1JbLwnEF4AQzMjMqUyK1jMUWZMwVBgTDkLCtSZVyMSTGOHAF8Cm5O-h2ffs5Wj_ouvTGVlX4oR29jjOWykymAbw_gKZvve-t013wiv2PBqb3QWrQxyADe3sURW-wcj02pvT_BzyNU6FU4G4OHPra6o927EOiXguRqmDrF9RKei4</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Zess, G. A</creator><creator>Thole, K. A</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane</title><author>Zess, G. A ; Thole, K. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-f0423c9b38df3911f40c87c97946e002e18239a3c9a02e50bc699f215ccf1fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Continuous cycle engines: steam and gas turbines, jet engines</topic><topic>Engines and turbines</topic><topic>Exact sciences and technology</topic><topic>Mechanical engineering. Machine design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zess, G. A</creatorcontrib><creatorcontrib>Thole, K. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of turbomachinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zess, G. A</au><au>Thole, K. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane</atitle><jtitle>Journal of turbomachinery</jtitle><stitle>J. Turbomach</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>124</volume><issue>2</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>0889-504X</issn><eissn>1528-8900</eissn><coden>JOTUEI</coden><abstract>With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1460914</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-504X
ispartof Journal of turbomachinery, 2002-04, Vol.124 (2), p.167-175
issn 0889-504X
1528-8900
language eng
recordid cdi_proquest_miscellaneous_27068786
source ASME Transactions Journals (Current)
subjects Applied sciences
Continuous cycle engines: steam and gas turbines, jet engines
Engines and turbines
Exact sciences and technology
Mechanical engineering. Machine design
title Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20and%20Experimental%20Evaluation%20of%20Using%20a%20Leading%20Edge%20Fillet%20on%20a%20Gas%20Turbine%20Vane&rft.jtitle=Journal%20of%20turbomachinery&rft.au=Zess,%20G.%20A&rft.date=2002-04-01&rft.volume=124&rft.issue=2&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=0889-504X&rft.eissn=1528-8900&rft.coden=JOTUEI&rft_id=info:doi/10.1115/1.1460914&rft_dat=%3Cproquest_cross%3E27068786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27068786&rft_id=info:pmid/&rfr_iscdi=true