On the Complexity of the Hidden Weighted Bit Function for Various BDD Models

Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RAIRO. Informatique théorique et applications 1999-03, Vol.33 (2), p.103-115
Hauptverfasser: Bollig, Beate, Löbbing, Martin, Sauerhoff, Martin, Wegener, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 2
container_start_page 103
container_title RAIRO. Informatique théorique et applications
container_volume 33
creator Bollig, Beate
Löbbing, Martin
Sauerhoff, Martin
Wegener, Ingo
description Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) is of particular interest, since it seems to be the simplest function with exponential OBDD size. The complexity of this function with respect to different circuit models, formulas, and various BDD models is discussed.
doi_str_mv 10.1051/ita:1999108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27066352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27066352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-a8888b7732b14a93e9941373823bbe6e246c7a4222b7c2d9b45a583c4e3d65633</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsn_0AO4kVW87G7SbzZ1lqhUgpqi5eQzWZtdLupSQrtv3e1Rd_LwMwzw_AAcI7RNUYZvrFR3WIhBEb8AHQwESihPJsfgg4SnCeUZekxOAnhAyGE23TAeNLAuDCw75ar2mxs3EJX_XZGtixNA2fGvi-iKWHPRjhcNzpa18DKefiqvHXrAHuDAXxypanDKTiqVB3M2b52wcvw_rk_SsaTh8f-3TjRKSUxUbxNwRglBU6VoEaIFFNGOaFFYXJD0lwzlRJCCqZJKYo0UxmnOjW0zLOc0i643N1defe1NiHKpQ3a1LVqTPuRJAzlOc1IC17tQO1dCN5UcuXtUvmtxEj-GJOtMbk31tIX-7MqaFVXXjXahv8VwUSOcIslO8yGaDZ_Y-U_Zc5axZKjmeR0Ps3e2FTO6TcqOXgv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27066352</pqid></control><display><type>article</type><title>On the Complexity of the Hidden Weighted Bit Function for Various BDD Models</title><source>NUMDAM</source><creator>Bollig, Beate ; Löbbing, Martin ; Sauerhoff, Martin ; Wegener, Ingo</creator><creatorcontrib>Bollig, Beate ; Löbbing, Martin ; Sauerhoff, Martin ; Wegener, Ingo</creatorcontrib><description>Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) is of particular interest, since it seems to be the simplest function with exponential OBDD size. The complexity of this function with respect to different circuit models, formulas, and various BDD models is discussed.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:1999108</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Paris: EDP Sciences</publisher><subject>68Q05 ; 68Q15 ; 94C10 ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Automata. Abstract machines. Turing machines ; binary decision diagram ; Complexity ; Computer science; control theory; systems ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; hidden weighted bit function ; OBDD ; Theoretical computing ; Theoretical study. Circuits analysis and design</subject><ispartof>RAIRO. Informatique théorique et applications, 1999-03, Vol.33 (2), p.103-115</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-a8888b7732b14a93e9941373823bbe6e246c7a4222b7c2d9b45a583c4e3d65633</citedby><cites>FETCH-LOGICAL-c432t-a8888b7732b14a93e9941373823bbe6e246c7a4222b7c2d9b45a583c4e3d65633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1979601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bollig, Beate</creatorcontrib><creatorcontrib>Löbbing, Martin</creatorcontrib><creatorcontrib>Sauerhoff, Martin</creatorcontrib><creatorcontrib>Wegener, Ingo</creatorcontrib><title>On the Complexity of the Hidden Weighted Bit Function for Various BDD Models</title><title>RAIRO. Informatique théorique et applications</title><description>Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) is of particular interest, since it seems to be the simplest function with exponential OBDD size. The complexity of this function with respect to different circuit models, formulas, and various BDD models is discussed.</description><subject>68Q05</subject><subject>68Q15</subject><subject>94C10</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>binary decision diagram</subject><subject>Complexity</subject><subject>Computer science; control theory; systems</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>hidden weighted bit function</subject><subject>OBDD</subject><subject>Theoretical computing</subject><subject>Theoretical study. Circuits analysis and design</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsn_0AO4kVW87G7SbzZ1lqhUgpqi5eQzWZtdLupSQrtv3e1Rd_LwMwzw_AAcI7RNUYZvrFR3WIhBEb8AHQwESihPJsfgg4SnCeUZekxOAnhAyGE23TAeNLAuDCw75ar2mxs3EJX_XZGtixNA2fGvi-iKWHPRjhcNzpa18DKefiqvHXrAHuDAXxypanDKTiqVB3M2b52wcvw_rk_SsaTh8f-3TjRKSUxUbxNwRglBU6VoEaIFFNGOaFFYXJD0lwzlRJCCqZJKYo0UxmnOjW0zLOc0i643N1defe1NiHKpQ3a1LVqTPuRJAzlOc1IC17tQO1dCN5UcuXtUvmtxEj-GJOtMbk31tIX-7MqaFVXXjXahv8VwUSOcIslO8yGaDZ_Y-U_Zc5axZKjmeR0Ps3e2FTO6TcqOXgv</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Bollig, Beate</creator><creator>Löbbing, Martin</creator><creator>Sauerhoff, Martin</creator><creator>Wegener, Ingo</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990301</creationdate><title>On the Complexity of the Hidden Weighted Bit Function for Various BDD Models</title><author>Bollig, Beate ; Löbbing, Martin ; Sauerhoff, Martin ; Wegener, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-a8888b7732b14a93e9941373823bbe6e246c7a4222b7c2d9b45a583c4e3d65633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>68Q05</topic><topic>68Q15</topic><topic>94C10</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>binary decision diagram</topic><topic>Complexity</topic><topic>Computer science; control theory; systems</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>hidden weighted bit function</topic><topic>OBDD</topic><topic>Theoretical computing</topic><topic>Theoretical study. Circuits analysis and design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bollig, Beate</creatorcontrib><creatorcontrib>Löbbing, Martin</creatorcontrib><creatorcontrib>Sauerhoff, Martin</creatorcontrib><creatorcontrib>Wegener, Ingo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>RAIRO. Informatique théorique et applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bollig, Beate</au><au>Löbbing, Martin</au><au>Sauerhoff, Martin</au><au>Wegener, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Complexity of the Hidden Weighted Bit Function for Various BDD Models</atitle><jtitle>RAIRO. Informatique théorique et applications</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>33</volume><issue>2</issue><spage>103</spage><epage>115</epage><pages>103-115</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>Ordered binary decision diagrams (OBDDs) and several more general BDD models have turned out to be representations of Boolean functions which are useful in applications like verification, timing analysis, test pattern generation or combinatorial optimization. The hidden weighted bit function (HWB) is of particular interest, since it seems to be the simplest function with exponential OBDD size. The complexity of this function with respect to different circuit models, formulas, and various BDD models is discussed.</abstract><cop>Paris</cop><pub>EDP Sciences</pub><doi>10.1051/ita:1999108</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0988-3754
ispartof RAIRO. Informatique théorique et applications, 1999-03, Vol.33 (2), p.103-115
issn 0988-3754
1290-385X
language eng
recordid cdi_proquest_miscellaneous_27066352
source NUMDAM
subjects 68Q05
68Q15
94C10
Algorithmics. Computability. Computer arithmetics
Applied sciences
Automata. Abstract machines. Turing machines
binary decision diagram
Complexity
Computer science
control theory
systems
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
hidden weighted bit function
OBDD
Theoretical computing
Theoretical study. Circuits analysis and design
title On the Complexity of the Hidden Weighted Bit Function for Various BDD Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Complexity%20of%20the%20Hidden%20Weighted%20Bit%20Function%20for%20Various%20BDD%20Models&rft.jtitle=RAIRO.%20Informatique%20the%CC%81orique%20et%20applications&rft.au=Bollig,%20Beate&rft.date=1999-03-01&rft.volume=33&rft.issue=2&rft.spage=103&rft.epage=115&rft.pages=103-115&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:1999108&rft_dat=%3Cproquest_cross%3E27066352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27066352&rft_id=info:pmid/&rfr_iscdi=true