Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system

The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2001-09, Vol.36 (18), p.4535-4542
Hauptverfasser: ALI, M. Y, CHEN, X, NEWAZ, G. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4542
container_issue 18
container_start_page 4535
container_title Journal of materials science
container_volume 36
creator ALI, M. Y
CHEN, X
NEWAZ, G. M
description The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.
doi_str_mv 10.1023/A:1017959509216
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27063470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27063470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b6cebc3453b733f20f1ea4af116198073e64750d6445ef919a84e016d2c3ebcf3</originalsourceid><addsrcrecordid>eNqNjztP7DAQhS0EEsujprUEostlxuPYMR2s4N4rIdFAHXmTCQQcZ4kTxP57wqOiopqZo-8cnRHiCOEPgqKzi3MEtC53OTiFZkssMLeU6QJoWywAlMqUNrgr9lJ6AoDcKlyI59u3tmYZ_IYHWfMrh37dcRzlFOtZGR956HyQ1aYKbXyQPtayHZMc-sCyj7L2nX9gya99mMZ2Fj6AtPYh-M-zjfLucinTJo3cHYidxofEh99zX9xfX90t_2U3t3__Ly9usoq0G7OVqXg1rzmtLFGjoEH22jeIBl0Blthom0NttM65ceh8oRnQ1Kqi2djQvjj9yl0P_cvEaSy7NlU8d4rcT6lUFgxpC78BiZzVvwFVQfSRePwDfOqnIc7flkoZQFTW0UydfFM-VT40g49Vm8r10HZ-2JSIGnTh6B05QY8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260112793</pqid></control><display><type>article</type><title>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</title><source>SpringerLink Journals - AutoHoldings</source><creator>ALI, M. Y ; CHEN, X ; NEWAZ, G. M</creator><contributor>WCA</contributor><creatorcontrib>ALI, M. Y ; CHEN, X ; NEWAZ, G. M ; WCA</creatorcontrib><description>The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1017959509216</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Aluminides ; Applied sciences ; Density ; Exact sciences and technology ; Experiments ; Grain boundaries ; Heat treatment ; Materials science ; Metals. Metallurgy ; Microcracks ; Nonmetallic coatings ; Physical vapor deposition ; Production techniques ; Scale (corrosion) ; Spallation ; Substrates ; Surface treatment ; Temperature ; Thermal barrier coatings ; Thermal cycling ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2001-09, Vol.36 (18), p.4535-4542</ispartof><rights>2001 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b6cebc3453b733f20f1ea4af116198073e64750d6445ef919a84e016d2c3ebcf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1140489$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>ALI, M. Y</creatorcontrib><creatorcontrib>CHEN, X</creatorcontrib><creatorcontrib>NEWAZ, G. M</creatorcontrib><title>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</title><title>Journal of materials science</title><description>The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.</description><subject>Aluminides</subject><subject>Applied sciences</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Grain boundaries</subject><subject>Heat treatment</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microcracks</subject><subject>Nonmetallic coatings</subject><subject>Physical vapor deposition</subject><subject>Production techniques</subject><subject>Scale (corrosion)</subject><subject>Spallation</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>Temperature</subject><subject>Thermal barrier coatings</subject><subject>Thermal cycling</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjztP7DAQhS0EEsujprUEostlxuPYMR2s4N4rIdFAHXmTCQQcZ4kTxP57wqOiopqZo-8cnRHiCOEPgqKzi3MEtC53OTiFZkssMLeU6QJoWywAlMqUNrgr9lJ6AoDcKlyI59u3tmYZ_IYHWfMrh37dcRzlFOtZGR956HyQ1aYKbXyQPtayHZMc-sCyj7L2nX9gya99mMZ2Fj6AtPYh-M-zjfLucinTJo3cHYidxofEh99zX9xfX90t_2U3t3__Ly9usoq0G7OVqXg1rzmtLFGjoEH22jeIBl0Blthom0NttM65ceh8oRnQ1Kqi2djQvjj9yl0P_cvEaSy7NlU8d4rcT6lUFgxpC78BiZzVvwFVQfSRePwDfOqnIc7flkoZQFTW0UydfFM-VT40g49Vm8r10HZ-2JSIGnTh6B05QY8T</recordid><startdate>20010915</startdate><enddate>20010915</enddate><creator>ALI, M. Y</creator><creator>CHEN, X</creator><creator>NEWAZ, G. M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>8BQ</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20010915</creationdate><title>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</title><author>ALI, M. Y ; CHEN, X ; NEWAZ, G. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b6cebc3453b733f20f1ea4af116198073e64750d6445ef919a84e016d2c3ebcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aluminides</topic><topic>Applied sciences</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Grain boundaries</topic><topic>Heat treatment</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microcracks</topic><topic>Nonmetallic coatings</topic><topic>Physical vapor deposition</topic><topic>Production techniques</topic><topic>Scale (corrosion)</topic><topic>Spallation</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>Temperature</topic><topic>Thermal barrier coatings</topic><topic>Thermal cycling</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALI, M. Y</creatorcontrib><creatorcontrib>CHEN, X</creatorcontrib><creatorcontrib>NEWAZ, G. M</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>METADEX</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALI, M. Y</au><au>CHEN, X</au><au>NEWAZ, G. M</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</atitle><jtitle>Journal of materials science</jtitle><date>2001-09-15</date><risdate>2001</risdate><volume>36</volume><issue>18</issue><spage>4535</spage><epage>4542</epage><pages>4535-4542</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1017959509216</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2001-09, Vol.36 (18), p.4535-4542
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_27063470
source SpringerLink Journals - AutoHoldings
subjects Aluminides
Applied sciences
Density
Exact sciences and technology
Experiments
Grain boundaries
Heat treatment
Materials science
Metals. Metallurgy
Microcracks
Nonmetallic coatings
Physical vapor deposition
Production techniques
Scale (corrosion)
Spallation
Substrates
Surface treatment
Temperature
Thermal barrier coatings
Thermal cycling
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
title Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%20layer%20development%20under%20thermal%20cycling%20and%20its%20role%20on%20damage%20evolution%20and%20spallation%20in%20TBC%20system&rft.jtitle=Journal%20of%20materials%20science&rft.au=ALI,%20M.%20Y&rft.date=2001-09-15&rft.volume=36&rft.issue=18&rft.spage=4535&rft.epage=4542&rft.pages=4535-4542&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1017959509216&rft_dat=%3Cproquest_pasca%3E27063470%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260112793&rft_id=info:pmid/&rfr_iscdi=true