Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system
The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air....
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2001-09, Vol.36 (18), p.4535-4542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4542 |
---|---|
container_issue | 18 |
container_start_page | 4535 |
container_title | Journal of materials science |
container_volume | 36 |
creator | ALI, M. Y CHEN, X NEWAZ, G. M |
description | The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments. |
doi_str_mv | 10.1023/A:1017959509216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27063470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27063470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b6cebc3453b733f20f1ea4af116198073e64750d6445ef919a84e016d2c3ebcf3</originalsourceid><addsrcrecordid>eNqNjztP7DAQhS0EEsujprUEostlxuPYMR2s4N4rIdFAHXmTCQQcZ4kTxP57wqOiopqZo-8cnRHiCOEPgqKzi3MEtC53OTiFZkssMLeU6QJoWywAlMqUNrgr9lJ6AoDcKlyI59u3tmYZ_IYHWfMrh37dcRzlFOtZGR956HyQ1aYKbXyQPtayHZMc-sCyj7L2nX9gya99mMZ2Fj6AtPYh-M-zjfLucinTJo3cHYidxofEh99zX9xfX90t_2U3t3__Ly9usoq0G7OVqXg1rzmtLFGjoEH22jeIBl0Blthom0NttM65ceh8oRnQ1Kqi2djQvjj9yl0P_cvEaSy7NlU8d4rcT6lUFgxpC78BiZzVvwFVQfSRePwDfOqnIc7flkoZQFTW0UydfFM-VT40g49Vm8r10HZ-2JSIGnTh6B05QY8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260112793</pqid></control><display><type>article</type><title>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</title><source>SpringerLink Journals - AutoHoldings</source><creator>ALI, M. Y ; CHEN, X ; NEWAZ, G. M</creator><contributor>WCA</contributor><creatorcontrib>ALI, M. Y ; CHEN, X ; NEWAZ, G. M ; WCA</creatorcontrib><description>The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1017959509216</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Aluminides ; Applied sciences ; Density ; Exact sciences and technology ; Experiments ; Grain boundaries ; Heat treatment ; Materials science ; Metals. Metallurgy ; Microcracks ; Nonmetallic coatings ; Physical vapor deposition ; Production techniques ; Scale (corrosion) ; Spallation ; Substrates ; Surface treatment ; Temperature ; Thermal barrier coatings ; Thermal cycling ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2001-09, Vol.36 (18), p.4535-4542</ispartof><rights>2001 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b6cebc3453b733f20f1ea4af116198073e64750d6445ef919a84e016d2c3ebcf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1140489$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>ALI, M. Y</creatorcontrib><creatorcontrib>CHEN, X</creatorcontrib><creatorcontrib>NEWAZ, G. M</creatorcontrib><title>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</title><title>Journal of materials science</title><description>The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.</description><subject>Aluminides</subject><subject>Applied sciences</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Grain boundaries</subject><subject>Heat treatment</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microcracks</subject><subject>Nonmetallic coatings</subject><subject>Physical vapor deposition</subject><subject>Production techniques</subject><subject>Scale (corrosion)</subject><subject>Spallation</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>Temperature</subject><subject>Thermal barrier coatings</subject><subject>Thermal cycling</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjztP7DAQhS0EEsujprUEostlxuPYMR2s4N4rIdFAHXmTCQQcZ4kTxP57wqOiopqZo-8cnRHiCOEPgqKzi3MEtC53OTiFZkssMLeU6QJoWywAlMqUNrgr9lJ6AoDcKlyI59u3tmYZ_IYHWfMrh37dcRzlFOtZGR956HyQ1aYKbXyQPtayHZMc-sCyj7L2nX9gya99mMZ2Fj6AtPYh-M-zjfLucinTJo3cHYidxofEh99zX9xfX90t_2U3t3__Ly9usoq0G7OVqXg1rzmtLFGjoEH22jeIBl0Blthom0NttM65ceh8oRnQ1Kqi2djQvjj9yl0P_cvEaSy7NlU8d4rcT6lUFgxpC78BiZzVvwFVQfSRePwDfOqnIc7flkoZQFTW0UydfFM-VT40g49Vm8r10HZ-2JSIGnTh6B05QY8T</recordid><startdate>20010915</startdate><enddate>20010915</enddate><creator>ALI, M. Y</creator><creator>CHEN, X</creator><creator>NEWAZ, G. M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>8BQ</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20010915</creationdate><title>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</title><author>ALI, M. Y ; CHEN, X ; NEWAZ, G. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b6cebc3453b733f20f1ea4af116198073e64750d6445ef919a84e016d2c3ebcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aluminides</topic><topic>Applied sciences</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Grain boundaries</topic><topic>Heat treatment</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microcracks</topic><topic>Nonmetallic coatings</topic><topic>Physical vapor deposition</topic><topic>Production techniques</topic><topic>Scale (corrosion)</topic><topic>Spallation</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>Temperature</topic><topic>Thermal barrier coatings</topic><topic>Thermal cycling</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALI, M. Y</creatorcontrib><creatorcontrib>CHEN, X</creatorcontrib><creatorcontrib>NEWAZ, G. M</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>METADEX</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALI, M. Y</au><au>CHEN, X</au><au>NEWAZ, G. M</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system</atitle><jtitle>Journal of materials science</jtitle><date>2001-09-15</date><risdate>2001</risdate><volume>36</volume><issue>18</issue><spage>4535</spage><epage>4542</epage><pages>4535-4542</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The nature and cause of failure of thermal barrier coatings (TBCs) consisting of physical vapor deposited (PVD) yttria stabilized zirconia (YSZ, 8 wt.% Y2O3) and a diffusion aluminide bond coat (Pt-Al) were investigated after oxidative thermal cycling and isothermal heat treatment at 1177 °C in air. Experiments were conducted for 45 and 10-minute hold times and for isothermal condition for disk specimens with and without TBC. It is found that microcracks starts in the oxide scales at the bond coat grain boundary protrusions. Total number of thermal cycles affect the density of microcracks within the TGO layer. Evidence is presented that higher density of microcracks in the 10-min hold-time experiments tend to separate the TBC from the TGO layer via extensive coating “micro-decohesion” and promotes 'complete' TBC separation as opposed to traditional 'partial' spallation of TBC from the substrate as in the 45-min hold-time and isothermal experiments.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1017959509216</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2001-09, Vol.36 (18), p.4535-4542 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_27063470 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminides Applied sciences Density Exact sciences and technology Experiments Grain boundaries Heat treatment Materials science Metals. Metallurgy Microcracks Nonmetallic coatings Physical vapor deposition Production techniques Scale (corrosion) Spallation Substrates Surface treatment Temperature Thermal barrier coatings Thermal cycling Yttria-stabilized zirconia Yttrium oxide Zirconium dioxide |
title | Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%20layer%20development%20under%20thermal%20cycling%20and%20its%20role%20on%20damage%20evolution%20and%20spallation%20in%20TBC%20system&rft.jtitle=Journal%20of%20materials%20science&rft.au=ALI,%20M.%20Y&rft.date=2001-09-15&rft.volume=36&rft.issue=18&rft.spage=4535&rft.epage=4542&rft.pages=4535-4542&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1017959509216&rft_dat=%3Cproquest_pasca%3E27063470%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260112793&rft_id=info:pmid/&rfr_iscdi=true |