Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries

Sulfide solid electrolytes (SSEs) show tremendous potential to realize high-energy-density secondary batteries and offer distinguishing safety features over the traditional liquid-electrolyte-based system. However, their installation is hindered by the air sensitivity and substandard interfacial com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-09, Vol.14 (35), p.39985-39995
Hauptverfasser: Lv, Lu, Ahmad, Niaz, Zeng, Chaoyuan, Yu, Peiwen, Song, Tinglu, Dong, Qinxi, Yang, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39995
container_issue 35
container_start_page 39985
container_title ACS applied materials & interfaces
container_volume 14
creator Lv, Lu
Ahmad, Niaz
Zeng, Chaoyuan
Yu, Peiwen
Song, Tinglu
Dong, Qinxi
Yang, Wen
description Sulfide solid electrolytes (SSEs) show tremendous potential to realize high-energy-density secondary batteries and offer distinguishing safety features over the traditional liquid-electrolyte-based system. However, their installation is hindered by the air sensitivity and substandard interfacial compatibility with Li-metal anodes. Herein, an aliovalent P5+/Ge4+ and isovalent S2–/O2– cosubstitution strategy increases the σLi+ to 4.77 mS cm–1, which is associated with the lowest activation energy (18.66 kJ mol–1). Impressively, with limited substitution of P/Ge and S/O in Li7P3S11, the derived electrolytes largely suppressed the structural hydrolysis in the air. Furthermore, the Li//Li cell with novel Li7P2.9Ge0.05S10.75O0.1 SSEs realized Li plating/stripping over 100 h at 0.1 mA cm–2/0.1 mAh cm–2 @ RT, with the lowest overpotential at ∼5 mV. Next, ex situ X-ray photoelectron spectroscopy (XPS) quantified the electrochemical decomposition of the Li7P3S11/LiNbO3@NCA interface during cell operation. XPS results confirmed better thermodynamic stability between LiNbO3@NCA and L7P3S11 after GeO2 substitution. Accordingly, the LiNbO3@NCA/Li7P2.9Ge0.05S10.75O0.1/Li–In cell performed remarkably; first discharge capacity, 158.9 mAh g–1; capacity retention, 89%; and Coulombic efficiency, ∼100% after 50 cycles @ 0.064 mA cm–2 and even at 0.3 mA cm–2 versus the first discharge capacity and retention (129.4 mAh g–1 and 75.73%) after 70 cycles @ RT. These remarkable results could be attributable to the excellent σLi+, chemical/electrochemical stability toward LiNbO3@NCA, and meager interfacial resistance, essential for the practical application of sulfide-based batteries.
doi_str_mv 10.1021/acsami.2c09717
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2706181023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706181023</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-5ff5a90307fcd6a42241be1c626fe4c90b0e6a8f5b368e5e43ebc4e35ca0e8633</originalsourceid><addsrcrecordid>eNo9kUtLw0AUhYMoWKtb17MUIXGeeSzbUttCoULrOkwmN2bKNFMzE6U_x39qQqurexfnnu9yThA8EhwRTMmLVE4edEQVzhKSXAUjknEeplTQ6_-d89vgzrk9xjGjWIyCn3lTy0ZBiSa6RbIp0dyA8q1VNRy0kgZtvSy00f6EbIXWOnmjUbYAHGGx7cmJ2PT4vyNz8uDQt_Y1WuqPGq1soxWa2abslNdfg0llW7SrtT3W1h1r6SGcSjfgjQm31ugy7IEe0FR6D60Gdx_cVNI4eLjMcfD-Ot_NluF6s1jNJutQUsp8KKpKyAwznFSqjCWnlJMCiIppXAFXGS4wxDKtRMHiFARwBoXiwISSGNKYsXHwdPY9tvazA-fzg3YKjJEN2M7lNMExSfukB-nzWdpHnu9t1zb9YznB-dBDfu4hv_TAfgFQ-3zC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706181023</pqid></control><display><type>article</type><title>Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries</title><source>American Chemical Society Journals</source><creator>Lv, Lu ; Ahmad, Niaz ; Zeng, Chaoyuan ; Yu, Peiwen ; Song, Tinglu ; Dong, Qinxi ; Yang, Wen</creator><creatorcontrib>Lv, Lu ; Ahmad, Niaz ; Zeng, Chaoyuan ; Yu, Peiwen ; Song, Tinglu ; Dong, Qinxi ; Yang, Wen</creatorcontrib><description>Sulfide solid electrolytes (SSEs) show tremendous potential to realize high-energy-density secondary batteries and offer distinguishing safety features over the traditional liquid-electrolyte-based system. However, their installation is hindered by the air sensitivity and substandard interfacial compatibility with Li-metal anodes. Herein, an aliovalent P5+/Ge4+ and isovalent S2–/O2– cosubstitution strategy increases the σLi+ to 4.77 mS cm–1, which is associated with the lowest activation energy (18.66 kJ mol–1). Impressively, with limited substitution of P/Ge and S/O in Li7P3S11, the derived electrolytes largely suppressed the structural hydrolysis in the air. Furthermore, the Li//Li cell with novel Li7P2.9Ge0.05S10.75O0.1 SSEs realized Li plating/stripping over 100 h at 0.1 mA cm–2/0.1 mAh cm–2 @ RT, with the lowest overpotential at ∼5 mV. Next, ex situ X-ray photoelectron spectroscopy (XPS) quantified the electrochemical decomposition of the Li7P3S11/LiNbO3@NCA interface during cell operation. XPS results confirmed better thermodynamic stability between LiNbO3@NCA and L7P3S11 after GeO2 substitution. Accordingly, the LiNbO3@NCA/Li7P2.9Ge0.05S10.75O0.1/Li–In cell performed remarkably; first discharge capacity, 158.9 mAh g–1; capacity retention, 89%; and Coulombic efficiency, ∼100% after 50 cycles @ 0.064 mA cm–2 and even at 0.3 mA cm–2 versus the first discharge capacity and retention (129.4 mAh g–1 and 75.73%) after 70 cycles @ RT. These remarkable results could be attributable to the excellent σLi+, chemical/electrochemical stability toward LiNbO3@NCA, and meager interfacial resistance, essential for the practical application of sulfide-based batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c09717</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-09, Vol.14 (35), p.39985-39995</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7032-6004 ; 0000-0003-2444-3300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c09717$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c09717$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Lv, Lu</creatorcontrib><creatorcontrib>Ahmad, Niaz</creatorcontrib><creatorcontrib>Zeng, Chaoyuan</creatorcontrib><creatorcontrib>Yu, Peiwen</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Dong, Qinxi</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><title>Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sulfide solid electrolytes (SSEs) show tremendous potential to realize high-energy-density secondary batteries and offer distinguishing safety features over the traditional liquid-electrolyte-based system. However, their installation is hindered by the air sensitivity and substandard interfacial compatibility with Li-metal anodes. Herein, an aliovalent P5+/Ge4+ and isovalent S2–/O2– cosubstitution strategy increases the σLi+ to 4.77 mS cm–1, which is associated with the lowest activation energy (18.66 kJ mol–1). Impressively, with limited substitution of P/Ge and S/O in Li7P3S11, the derived electrolytes largely suppressed the structural hydrolysis in the air. Furthermore, the Li//Li cell with novel Li7P2.9Ge0.05S10.75O0.1 SSEs realized Li plating/stripping over 100 h at 0.1 mA cm–2/0.1 mAh cm–2 @ RT, with the lowest overpotential at ∼5 mV. Next, ex situ X-ray photoelectron spectroscopy (XPS) quantified the electrochemical decomposition of the Li7P3S11/LiNbO3@NCA interface during cell operation. XPS results confirmed better thermodynamic stability between LiNbO3@NCA and L7P3S11 after GeO2 substitution. Accordingly, the LiNbO3@NCA/Li7P2.9Ge0.05S10.75O0.1/Li–In cell performed remarkably; first discharge capacity, 158.9 mAh g–1; capacity retention, 89%; and Coulombic efficiency, ∼100% after 50 cycles @ 0.064 mA cm–2 and even at 0.3 mA cm–2 versus the first discharge capacity and retention (129.4 mAh g–1 and 75.73%) after 70 cycles @ RT. These remarkable results could be attributable to the excellent σLi+, chemical/electrochemical stability toward LiNbO3@NCA, and meager interfacial resistance, essential for the practical application of sulfide-based batteries.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kUtLw0AUhYMoWKtb17MUIXGeeSzbUttCoULrOkwmN2bKNFMzE6U_x39qQqurexfnnu9yThA8EhwRTMmLVE4edEQVzhKSXAUjknEeplTQ6_-d89vgzrk9xjGjWIyCn3lTy0ZBiSa6RbIp0dyA8q1VNRy0kgZtvSy00f6EbIXWOnmjUbYAHGGx7cmJ2PT4vyNz8uDQt_Y1WuqPGq1soxWa2abslNdfg0llW7SrtT3W1h1r6SGcSjfgjQm31ugy7IEe0FR6D60Gdx_cVNI4eLjMcfD-Ot_NluF6s1jNJutQUsp8KKpKyAwznFSqjCWnlJMCiIppXAFXGS4wxDKtRMHiFARwBoXiwISSGNKYsXHwdPY9tvazA-fzg3YKjJEN2M7lNMExSfukB-nzWdpHnu9t1zb9YznB-dBDfu4hv_TAfgFQ-3zC</recordid><startdate>20220907</startdate><enddate>20220907</enddate><creator>Lv, Lu</creator><creator>Ahmad, Niaz</creator><creator>Zeng, Chaoyuan</creator><creator>Yu, Peiwen</creator><creator>Song, Tinglu</creator><creator>Dong, Qinxi</creator><creator>Yang, Wen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7032-6004</orcidid><orcidid>https://orcid.org/0000-0003-2444-3300</orcidid></search><sort><creationdate>20220907</creationdate><title>Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries</title><author>Lv, Lu ; Ahmad, Niaz ; Zeng, Chaoyuan ; Yu, Peiwen ; Song, Tinglu ; Dong, Qinxi ; Yang, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-5ff5a90307fcd6a42241be1c626fe4c90b0e6a8f5b368e5e43ebc4e35ca0e8633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Lu</creatorcontrib><creatorcontrib>Ahmad, Niaz</creatorcontrib><creatorcontrib>Zeng, Chaoyuan</creatorcontrib><creatorcontrib>Yu, Peiwen</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Dong, Qinxi</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Lu</au><au>Ahmad, Niaz</au><au>Zeng, Chaoyuan</au><au>Yu, Peiwen</au><au>Song, Tinglu</au><au>Dong, Qinxi</au><au>Yang, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-09-07</date><risdate>2022</risdate><volume>14</volume><issue>35</issue><spage>39985</spage><epage>39995</epage><pages>39985-39995</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sulfide solid electrolytes (SSEs) show tremendous potential to realize high-energy-density secondary batteries and offer distinguishing safety features over the traditional liquid-electrolyte-based system. However, their installation is hindered by the air sensitivity and substandard interfacial compatibility with Li-metal anodes. Herein, an aliovalent P5+/Ge4+ and isovalent S2–/O2– cosubstitution strategy increases the σLi+ to 4.77 mS cm–1, which is associated with the lowest activation energy (18.66 kJ mol–1). Impressively, with limited substitution of P/Ge and S/O in Li7P3S11, the derived electrolytes largely suppressed the structural hydrolysis in the air. Furthermore, the Li//Li cell with novel Li7P2.9Ge0.05S10.75O0.1 SSEs realized Li plating/stripping over 100 h at 0.1 mA cm–2/0.1 mAh cm–2 @ RT, with the lowest overpotential at ∼5 mV. Next, ex situ X-ray photoelectron spectroscopy (XPS) quantified the electrochemical decomposition of the Li7P3S11/LiNbO3@NCA interface during cell operation. XPS results confirmed better thermodynamic stability between LiNbO3@NCA and L7P3S11 after GeO2 substitution. Accordingly, the LiNbO3@NCA/Li7P2.9Ge0.05S10.75O0.1/Li–In cell performed remarkably; first discharge capacity, 158.9 mAh g–1; capacity retention, 89%; and Coulombic efficiency, ∼100% after 50 cycles @ 0.064 mA cm–2 and even at 0.3 mA cm–2 versus the first discharge capacity and retention (129.4 mAh g–1 and 75.73%) after 70 cycles @ RT. These remarkable results could be attributable to the excellent σLi+, chemical/electrochemical stability toward LiNbO3@NCA, and meager interfacial resistance, essential for the practical application of sulfide-based batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c09717</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7032-6004</orcidid><orcidid>https://orcid.org/0000-0003-2444-3300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-09, Vol.14 (35), p.39985-39995
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2706181023
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Air%20and%20Electrochemical%20Stability%20of%20Li7P2.9Ge0.05S10.75O0.1%20Electrolytes%20with%20High%20Ionic%20Conductivity%20for%20Thiophosphate-Based%20All-Solid-State%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lv,%20Lu&rft.date=2022-09-07&rft.volume=14&rft.issue=35&rft.spage=39985&rft.epage=39995&rft.pages=39985-39995&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c09717&rft_dat=%3Cproquest_acs_j%3E2706181023%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706181023&rft_id=info:pmid/&rfr_iscdi=true