Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988-2000

Balloon‐borne aerosol backscatter measurements were made at 12 Arctic stations as part of a polar stratospheric cloud study. The record starts in 1988, which is well before the eruption of Mount Pinatubo in the beginning of June 1991, and continues to 2000. These measurements provide absolutely cali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2001-09, Vol.106 (D18), p.20759-20766
Hauptverfasser: Suortti, T., Karhu, J., Kivi, R., Kyrö, E., Rosen, J., Kjome, N., Larsen, N., Neuber, R., Khattatov, V., Rudakov, V., Yushkov, V., Nakane, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20766
container_issue D18
container_start_page 20759
container_title Journal of Geophysical Research
container_volume 106
creator Suortti, T.
Karhu, J.
Kivi, R.
Kyrö, E.
Rosen, J.
Kjome, N.
Larsen, N.
Neuber, R.
Khattatov, V.
Rudakov, V.
Yushkov, V.
Nakane, H.
description Balloon‐borne aerosol backscatter measurements were made at 12 Arctic stations as part of a polar stratospheric cloud study. The record starts in 1988, which is well before the eruption of Mount Pinatubo in the beginning of June 1991, and continues to 2000. These measurements provide absolutely calibrated in situ detection of atmospheric aerosols with simultaneous measurements of pressure, temperature, relative humidity, and O3 partial pressure. The instrument is also capable of operating during cloudy conditions, which may be considered as an advantage compared with lidar measurements. Even though backscatter soundings represent the state of the atmosphere at the sounding time and site, we demonstrate here that with a limited, homogeneous set of measurements it is possible to effectively study the time development of atmospheric aerosol loading. The initial aim of the study has been to define the general features of aerosol distribution in the Arctic winter troposphere and stratosphere and then to document the perturbation in the lower stratospheric aerosols caused by the eruption of Mount Pinatubo and, in addition, to infer the background state of lower stratospheric aerosol loading during the pre‐ and post‐Pinatubo conditions. Our measurements suggest that the e‐folding time for the decaying volcanic aerosol intrusion was ∼0.7 year and the full recovery of the Arctic lower stratosphere from the Mount Pinatubo perturbation was roughly 5 years.
doi_str_mv 10.1029/2000JD000180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27058619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27058619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4136-e8aee26336b4efa04d9de460f8e8a8141c1fde0f3f7ab7a05689857c4fffc7be3</originalsourceid><addsrcrecordid>eNp9kMFuGyEQhlHVSrXS3PoAXNJTtwWWBfYYxYnbKHKlKFWPiGWHmgQvLuAkfoC8d7AcpT31wgjN9_2aGYQ-UvKFEtZ_ZYSQy3l9qCJv0IzRTjSMEfYWzQjlqiGMyffoOOfbyhDeCU7oDD2d38ewLT5OODpcVoBPky3e4lySKTFvVpDqz0CKOQa89o9--o1ry0e8BpO3CUb84MsKDyaEGKdmiGmCV2Ew9i5bUwoknOM0QsYuJrwDkzKmvVLNfu4P6J0zIcPxSz1CPy_Ob86-NVc_Ft_PTq8ay2krGlAGgIm2FQMHZwgf-xG4IE7VjqKcWupGIK510gzSkE6oXnXScueclQO0R-jTIXeT4p8t5KLXPlsIwUwQt1kzSTolaF_BzwfQ1jVyAqc3ya9N2mlK9P7c-t9zV_zkJdfUZYNLZrI-_3U4UX3H9hw7cA8-wO6_mfpycT2XSogqNQfJ5wKPr5JJd1rIVnb613Kh59fLJWct1TftMyQInlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27058619</pqid></control><display><type>article</type><title>Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988-2000</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Suortti, T. ; Karhu, J. ; Kivi, R. ; Kyrö, E. ; Rosen, J. ; Kjome, N. ; Larsen, N. ; Neuber, R. ; Khattatov, V. ; Rudakov, V. ; Yushkov, V. ; Nakane, H.</creator><creatorcontrib>Suortti, T. ; Karhu, J. ; Kivi, R. ; Kyrö, E. ; Rosen, J. ; Kjome, N. ; Larsen, N. ; Neuber, R. ; Khattatov, V. ; Rudakov, V. ; Yushkov, V. ; Nakane, H.</creatorcontrib><description>Balloon‐borne aerosol backscatter measurements were made at 12 Arctic stations as part of a polar stratospheric cloud study. The record starts in 1988, which is well before the eruption of Mount Pinatubo in the beginning of June 1991, and continues to 2000. These measurements provide absolutely calibrated in situ detection of atmospheric aerosols with simultaneous measurements of pressure, temperature, relative humidity, and O3 partial pressure. The instrument is also capable of operating during cloudy conditions, which may be considered as an advantage compared with lidar measurements. Even though backscatter soundings represent the state of the atmosphere at the sounding time and site, we demonstrate here that with a limited, homogeneous set of measurements it is possible to effectively study the time development of atmospheric aerosol loading. The initial aim of the study has been to define the general features of aerosol distribution in the Arctic winter troposphere and stratosphere and then to document the perturbation in the lower stratospheric aerosols caused by the eruption of Mount Pinatubo and, in addition, to infer the background state of lower stratospheric aerosol loading during the pre‐ and post‐Pinatubo conditions. Our measurements suggest that the e‐folding time for the decaying volcanic aerosol intrusion was ∼0.7 year and the full recovery of the Arctic lower stratosphere from the Mount Pinatubo perturbation was roughly 5 years.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2000JD000180</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><ispartof>Journal of Geophysical Research, 2001-09, Vol.106 (D18), p.20759-20766</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4136-e8aee26336b4efa04d9de460f8e8a8141c1fde0f3f7ab7a05689857c4fffc7be3</citedby><cites>FETCH-LOGICAL-c4136-e8aee26336b4efa04d9de460f8e8a8141c1fde0f3f7ab7a05689857c4fffc7be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000JD000180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000JD000180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14089520$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suortti, T.</creatorcontrib><creatorcontrib>Karhu, J.</creatorcontrib><creatorcontrib>Kivi, R.</creatorcontrib><creatorcontrib>Kyrö, E.</creatorcontrib><creatorcontrib>Rosen, J.</creatorcontrib><creatorcontrib>Kjome, N.</creatorcontrib><creatorcontrib>Larsen, N.</creatorcontrib><creatorcontrib>Neuber, R.</creatorcontrib><creatorcontrib>Khattatov, V.</creatorcontrib><creatorcontrib>Rudakov, V.</creatorcontrib><creatorcontrib>Yushkov, V.</creatorcontrib><creatorcontrib>Nakane, H.</creatorcontrib><title>Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988-2000</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Balloon‐borne aerosol backscatter measurements were made at 12 Arctic stations as part of a polar stratospheric cloud study. The record starts in 1988, which is well before the eruption of Mount Pinatubo in the beginning of June 1991, and continues to 2000. These measurements provide absolutely calibrated in situ detection of atmospheric aerosols with simultaneous measurements of pressure, temperature, relative humidity, and O3 partial pressure. The instrument is also capable of operating during cloudy conditions, which may be considered as an advantage compared with lidar measurements. Even though backscatter soundings represent the state of the atmosphere at the sounding time and site, we demonstrate here that with a limited, homogeneous set of measurements it is possible to effectively study the time development of atmospheric aerosol loading. The initial aim of the study has been to define the general features of aerosol distribution in the Arctic winter troposphere and stratosphere and then to document the perturbation in the lower stratospheric aerosols caused by the eruption of Mount Pinatubo and, in addition, to infer the background state of lower stratospheric aerosol loading during the pre‐ and post‐Pinatubo conditions. Our measurements suggest that the e‐folding time for the decaying volcanic aerosol intrusion was ∼0.7 year and the full recovery of the Arctic lower stratosphere from the Mount Pinatubo perturbation was roughly 5 years.</description><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEQhlHVSrXS3PoAXNJTtwWWBfYYxYnbKHKlKFWPiGWHmgQvLuAkfoC8d7AcpT31wgjN9_2aGYQ-UvKFEtZ_ZYSQy3l9qCJv0IzRTjSMEfYWzQjlqiGMyffoOOfbyhDeCU7oDD2d38ewLT5OODpcVoBPky3e4lySKTFvVpDqz0CKOQa89o9--o1ry0e8BpO3CUb84MsKDyaEGKdmiGmCV2Ew9i5bUwoknOM0QsYuJrwDkzKmvVLNfu4P6J0zIcPxSz1CPy_Ob86-NVc_Ft_PTq8ay2krGlAGgIm2FQMHZwgf-xG4IE7VjqKcWupGIK510gzSkE6oXnXScueclQO0R-jTIXeT4p8t5KLXPlsIwUwQt1kzSTolaF_BzwfQ1jVyAqc3ya9N2mlK9P7c-t9zV_zkJdfUZYNLZrI-_3U4UX3H9hw7cA8-wO6_mfpycT2XSogqNQfJ5wKPr5JJd1rIVnb613Kh59fLJWct1TftMyQInlY</recordid><startdate>20010927</startdate><enddate>20010927</enddate><creator>Suortti, T.</creator><creator>Karhu, J.</creator><creator>Kivi, R.</creator><creator>Kyrö, E.</creator><creator>Rosen, J.</creator><creator>Kjome, N.</creator><creator>Larsen, N.</creator><creator>Neuber, R.</creator><creator>Khattatov, V.</creator><creator>Rudakov, V.</creator><creator>Yushkov, V.</creator><creator>Nakane, H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20010927</creationdate><title>Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988-2000</title><author>Suortti, T. ; Karhu, J. ; Kivi, R. ; Kyrö, E. ; Rosen, J. ; Kjome, N. ; Larsen, N. ; Neuber, R. ; Khattatov, V. ; Rudakov, V. ; Yushkov, V. ; Nakane, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4136-e8aee26336b4efa04d9de460f8e8a8141c1fde0f3f7ab7a05689857c4fffc7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suortti, T.</creatorcontrib><creatorcontrib>Karhu, J.</creatorcontrib><creatorcontrib>Kivi, R.</creatorcontrib><creatorcontrib>Kyrö, E.</creatorcontrib><creatorcontrib>Rosen, J.</creatorcontrib><creatorcontrib>Kjome, N.</creatorcontrib><creatorcontrib>Larsen, N.</creatorcontrib><creatorcontrib>Neuber, R.</creatorcontrib><creatorcontrib>Khattatov, V.</creatorcontrib><creatorcontrib>Rudakov, V.</creatorcontrib><creatorcontrib>Yushkov, V.</creatorcontrib><creatorcontrib>Nakane, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suortti, T.</au><au>Karhu, J.</au><au>Kivi, R.</au><au>Kyrö, E.</au><au>Rosen, J.</au><au>Kjome, N.</au><au>Larsen, N.</au><au>Neuber, R.</au><au>Khattatov, V.</au><au>Rudakov, V.</au><au>Yushkov, V.</au><au>Nakane, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988-2000</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2001-09-27</date><risdate>2001</risdate><volume>106</volume><issue>D18</issue><spage>20759</spage><epage>20766</epage><pages>20759-20766</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Balloon‐borne aerosol backscatter measurements were made at 12 Arctic stations as part of a polar stratospheric cloud study. The record starts in 1988, which is well before the eruption of Mount Pinatubo in the beginning of June 1991, and continues to 2000. These measurements provide absolutely calibrated in situ detection of atmospheric aerosols with simultaneous measurements of pressure, temperature, relative humidity, and O3 partial pressure. The instrument is also capable of operating during cloudy conditions, which may be considered as an advantage compared with lidar measurements. Even though backscatter soundings represent the state of the atmosphere at the sounding time and site, we demonstrate here that with a limited, homogeneous set of measurements it is possible to effectively study the time development of atmospheric aerosol loading. The initial aim of the study has been to define the general features of aerosol distribution in the Arctic winter troposphere and stratosphere and then to document the perturbation in the lower stratospheric aerosols caused by the eruption of Mount Pinatubo and, in addition, to infer the background state of lower stratospheric aerosol loading during the pre‐ and post‐Pinatubo conditions. Our measurements suggest that the e‐folding time for the decaying volcanic aerosol intrusion was ∼0.7 year and the full recovery of the Arctic lower stratosphere from the Mount Pinatubo perturbation was roughly 5 years.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000JD000180</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2001-09, Vol.106 (D18), p.20759-20766
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_27058619
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
title Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988-2000
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Arctic%20stratospheric%20aerosol%20mixing%20ratio%20measured%20with%20balloon-borne%20aerosol%20backscatter%20sondes%20for%20years%201988-2000&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Suortti,%20T.&rft.date=2001-09-27&rft.volume=106&rft.issue=D18&rft.spage=20759&rft.epage=20766&rft.pages=20759-20766&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2000JD000180&rft_dat=%3Cproquest_cross%3E27058619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27058619&rft_id=info:pmid/&rfr_iscdi=true