In-process monitoring of grinding burn in the cylindrical grinding of steel
While moving towards complete automation of the grinding process in order to be able to realise unattended manufacturing, it becomes mandatory to closely monitor the process in order to detect any malfunction at the earliest moment with high reliability. In the grinding process, a proper estimate of...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 1999-06, Vol.91 (1), p.37-42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Journal of materials processing technology |
container_volume | 91 |
creator | Deiva Nathan, R Vijayaraghavan, L Krishnamurthy, R |
description | While moving towards complete automation of the grinding process in order to be able to realise unattended manufacturing, it becomes mandatory to closely monitor the process in order to detect any malfunction at the earliest moment with high reliability. In the grinding process, a proper estimate of the life of the grinding wheel is very useful. When this life expires, redressing is necessary. Generally, chatter marks, surface roughness, burn marks, etc. are considered as the tool-life limit in grinding. In this paper, the occurrence of burn marks on the work surface is adopted as a criterion of the wheel life; accordingly, the time of the occurrence of grinding burn during the cylindrical plunge grinding of steel is studied under different conditions of grinding. The data thus collected is used for the prediction of the time to burn using an artificial neural network. |
doi_str_mv | 10.1016/S0924-0136(98)00408-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27054182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013698004087</els_id><sourcerecordid>27054182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-11bd6151d597e93bd33e4ef5d09939e94967401df80e58bb16475814dc0467583</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxXNQsFY_grAn0cPqpEl2k5NI8U-x4EE9h91ktka2SU22Qr-9aSt69DSP4fceM4-QMwpXFGh1_QJqwkugrLpQ8hKAgyzrAzL6XR-R45Q-AGgNUo7I08yXqxgMplQsg3dDiM4vitAViyzsVrfr6Avni-EdC7Pp8zY60_R_QIbTgNifkMOu6ROe_swxebu_e50-lvPnh9n0dl4axuRQUtraigpqhapRsdYyhhw7YUEpplBxVdUcqO0koJBtSyteC0m5NcCrrNiYnO9z8-Gfa0yDXrpksO8bj2Gd9KQGwamcZFDsQRNDShE7vYpu2cSNpqC3deldXXrbi1ZS7-rSdfbd7H2Yv_hyGHUyDr1B6yKaQdvg_kn4BhAqczk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27054182</pqid></control><display><type>article</type><title>In-process monitoring of grinding burn in the cylindrical grinding of steel</title><source>Elsevier ScienceDirect Journals</source><creator>Deiva Nathan, R ; Vijayaraghavan, L ; Krishnamurthy, R</creator><creatorcontrib>Deiva Nathan, R ; Vijayaraghavan, L ; Krishnamurthy, R</creatorcontrib><description>While moving towards complete automation of the grinding process in order to be able to realise unattended manufacturing, it becomes mandatory to closely monitor the process in order to detect any malfunction at the earliest moment with high reliability. In the grinding process, a proper estimate of the life of the grinding wheel is very useful. When this life expires, redressing is necessary. Generally, chatter marks, surface roughness, burn marks, etc. are considered as the tool-life limit in grinding. In this paper, the occurrence of burn marks on the work surface is adopted as a criterion of the wheel life; accordingly, the time of the occurrence of grinding burn during the cylindrical plunge grinding of steel is studied under different conditions of grinding. The data thus collected is used for the prediction of the time to burn using an artificial neural network.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/S0924-0136(98)00408-7</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Detection of grinding burn ; Neural network ; Spark temperature ; Wheel life prediction</subject><ispartof>Journal of materials processing technology, 1999-06, Vol.91 (1), p.37-42</ispartof><rights>1999 Elsevier Science S.A.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-11bd6151d597e93bd33e4ef5d09939e94967401df80e58bb16475814dc0467583</citedby><cites>FETCH-LOGICAL-c338t-11bd6151d597e93bd33e4ef5d09939e94967401df80e58bb16475814dc0467583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013698004087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Deiva Nathan, R</creatorcontrib><creatorcontrib>Vijayaraghavan, L</creatorcontrib><creatorcontrib>Krishnamurthy, R</creatorcontrib><title>In-process monitoring of grinding burn in the cylindrical grinding of steel</title><title>Journal of materials processing technology</title><description>While moving towards complete automation of the grinding process in order to be able to realise unattended manufacturing, it becomes mandatory to closely monitor the process in order to detect any malfunction at the earliest moment with high reliability. In the grinding process, a proper estimate of the life of the grinding wheel is very useful. When this life expires, redressing is necessary. Generally, chatter marks, surface roughness, burn marks, etc. are considered as the tool-life limit in grinding. In this paper, the occurrence of burn marks on the work surface is adopted as a criterion of the wheel life; accordingly, the time of the occurrence of grinding burn during the cylindrical plunge grinding of steel is studied under different conditions of grinding. The data thus collected is used for the prediction of the time to burn using an artificial neural network.</description><subject>Detection of grinding burn</subject><subject>Neural network</subject><subject>Spark temperature</subject><subject>Wheel life prediction</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxXNQsFY_grAn0cPqpEl2k5NI8U-x4EE9h91ktka2SU22Qr-9aSt69DSP4fceM4-QMwpXFGh1_QJqwkugrLpQ8hKAgyzrAzL6XR-R45Q-AGgNUo7I08yXqxgMplQsg3dDiM4vitAViyzsVrfr6Avni-EdC7Pp8zY60_R_QIbTgNifkMOu6ROe_swxebu_e50-lvPnh9n0dl4axuRQUtraigpqhapRsdYyhhw7YUEpplBxVdUcqO0koJBtSyteC0m5NcCrrNiYnO9z8-Gfa0yDXrpksO8bj2Gd9KQGwamcZFDsQRNDShE7vYpu2cSNpqC3deldXXrbi1ZS7-rSdfbd7H2Yv_hyGHUyDr1B6yKaQdvg_kn4BhAqczk</recordid><startdate>19990630</startdate><enddate>19990630</enddate><creator>Deiva Nathan, R</creator><creator>Vijayaraghavan, L</creator><creator>Krishnamurthy, R</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19990630</creationdate><title>In-process monitoring of grinding burn in the cylindrical grinding of steel</title><author>Deiva Nathan, R ; Vijayaraghavan, L ; Krishnamurthy, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-11bd6151d597e93bd33e4ef5d09939e94967401df80e58bb16475814dc0467583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Detection of grinding burn</topic><topic>Neural network</topic><topic>Spark temperature</topic><topic>Wheel life prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deiva Nathan, R</creatorcontrib><creatorcontrib>Vijayaraghavan, L</creatorcontrib><creatorcontrib>Krishnamurthy, R</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deiva Nathan, R</au><au>Vijayaraghavan, L</au><au>Krishnamurthy, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-process monitoring of grinding burn in the cylindrical grinding of steel</atitle><jtitle>Journal of materials processing technology</jtitle><date>1999-06-30</date><risdate>1999</risdate><volume>91</volume><issue>1</issue><spage>37</spage><epage>42</epage><pages>37-42</pages><issn>0924-0136</issn><abstract>While moving towards complete automation of the grinding process in order to be able to realise unattended manufacturing, it becomes mandatory to closely monitor the process in order to detect any malfunction at the earliest moment with high reliability. In the grinding process, a proper estimate of the life of the grinding wheel is very useful. When this life expires, redressing is necessary. Generally, chatter marks, surface roughness, burn marks, etc. are considered as the tool-life limit in grinding. In this paper, the occurrence of burn marks on the work surface is adopted as a criterion of the wheel life; accordingly, the time of the occurrence of grinding burn during the cylindrical plunge grinding of steel is studied under different conditions of grinding. The data thus collected is used for the prediction of the time to burn using an artificial neural network.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0924-0136(98)00408-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 1999-06, Vol.91 (1), p.37-42 |
issn | 0924-0136 |
language | eng |
recordid | cdi_proquest_miscellaneous_27054182 |
source | Elsevier ScienceDirect Journals |
subjects | Detection of grinding burn Neural network Spark temperature Wheel life prediction |
title | In-process monitoring of grinding burn in the cylindrical grinding of steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-process%20monitoring%20of%20grinding%20burn%20in%20the%20cylindrical%20grinding%20of%20steel&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Deiva%20Nathan,%20R&rft.date=1999-06-30&rft.volume=91&rft.issue=1&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.issn=0924-0136&rft_id=info:doi/10.1016/S0924-0136(98)00408-7&rft_dat=%3Cproquest_cross%3E27054182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27054182&rft_id=info:pmid/&rft_els_id=S0924013698004087&rfr_iscdi=true |