Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions

•Biofilm thickness increased along the feed water path due to temperature gradient.•Diversity of EPS fluorescence peaks decreased with the increase in feed temperature.•Larger proportion of thermophilic bacteria colonized membranes at 55°C and 65°C.•Intact cells in biofilms were dominant over the da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2022-09, Vol.223, p.118983-118983, Article 118983
Hauptverfasser: Elcik, Harun, Alpatova, Alla, Gonzalez-Gil, Graciela, Blankert, Bastiaan, Farhat, Nadia, Amin, Najat A., Vrouwenvelder, Johannes S., Ghaffour, Noreddine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118983
container_issue
container_start_page 118983
container_title Water research (Oxford)
container_volume 223
creator Elcik, Harun
Alpatova, Alla
Gonzalez-Gil, Graciela
Blankert, Bastiaan
Farhat, Nadia
Amin, Najat A.
Vrouwenvelder, Johannes S.
Ghaffour, Noreddine
description •Biofilm thickness increased along the feed water path due to temperature gradient.•Diversity of EPS fluorescence peaks decreased with the increase in feed temperature.•Larger proportion of thermophilic bacteria colonized membranes at 55°C and 65°C.•Intact cells in biofilms were dominant over the damaged cells.•Biofilm maturation alleviated bacterial passage to permeate side. Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions. This study presents a comprehensive analysis of the spatial and temporal biofilm distribution and associated membrane fouling during direct contact MD (DCMD) of the Red Sea water. We found that structure and composition of the biofilm layer played a significant role in the extent of permeate flux decline, and biofilms that built up at 45°C had lower bacterial concentration but higher extracellular polymeric substances (EPS) content as compared to biofilms that formed at 55 °C and 65°C. Pore wetting and bacterial passage to the permeate side were initially observed but slowed down as operating time increased. Intact cells in biofilms dominated over the damaged cells at any tested condition emphasizing the high adaptivity of the Red Sea microbial communities to elevated feed temperatures. A comparison of microbial abundance revealed a difference in bacterial distribution between the feed and biofilm samples. A shift in the biofilm microbial community and colonization of the membrane surface with thermophilic bacteria with the feed temperature increase was observed. The results of this study improve our understanding of biofouling propensity in MD that utilizes temperature-resilient feed waters. [Display omitted] .
doi_str_mv 10.1016/j.watres.2022.118983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2705399832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135422009307</els_id><sourcerecordid>2705399832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-d861f7a0d11c0d24d1d1ebe6abc4545c506861eee0776907b6cbf0f3c9772fdd3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQC0EEqXwBxx85JLgLdsFCVVsUiUucLYce9K6SuJiO0X8PY7CmdOMxm8WP4RuKckpoeX9If9W0UPIGWEsp7Ruan6GVrSumowJUZ-jFSGCZ5QX4hJdhXAgJJG8WaHTUz9pa1S04w631nVu6ufUncDjuAc_qB6r0eBwTEzKd14ZC2MM2I44gEqbEznA0Ho1AjY2RNv3iXXjTOxdxLq3QyporN1o7PwSrtFFp_oAN39xjT6fnz42r9n2_eVt87jNNOdNzExd0q5SxFCqiWHCUEOhhVK1WhSi0AUpEwEApKrKhlRtqduOdFw3VcU6Y_ga3S1zj959TRCiHGzQkA4cwU1BsooUvEm6WELFgmrvQvDQyaNPd_sfSYmcNcuDXDTLWbNcNKe2h6UN0jdOFrwMOvnRYKwHHaVx9v8Bvx9Bi5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705399832</pqid></control><display><type>article</type><title>Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Elcik, Harun ; Alpatova, Alla ; Gonzalez-Gil, Graciela ; Blankert, Bastiaan ; Farhat, Nadia ; Amin, Najat A. ; Vrouwenvelder, Johannes S. ; Ghaffour, Noreddine</creator><creatorcontrib>Elcik, Harun ; Alpatova, Alla ; Gonzalez-Gil, Graciela ; Blankert, Bastiaan ; Farhat, Nadia ; Amin, Najat A. ; Vrouwenvelder, Johannes S. ; Ghaffour, Noreddine</creatorcontrib><description>•Biofilm thickness increased along the feed water path due to temperature gradient.•Diversity of EPS fluorescence peaks decreased with the increase in feed temperature.•Larger proportion of thermophilic bacteria colonized membranes at 55°C and 65°C.•Intact cells in biofilms were dominant over the damaged cells.•Biofilm maturation alleviated bacterial passage to permeate side. Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions. This study presents a comprehensive analysis of the spatial and temporal biofilm distribution and associated membrane fouling during direct contact MD (DCMD) of the Red Sea water. We found that structure and composition of the biofilm layer played a significant role in the extent of permeate flux decline, and biofilms that built up at 45°C had lower bacterial concentration but higher extracellular polymeric substances (EPS) content as compared to biofilms that formed at 55 °C and 65°C. Pore wetting and bacterial passage to the permeate side were initially observed but slowed down as operating time increased. Intact cells in biofilms dominated over the damaged cells at any tested condition emphasizing the high adaptivity of the Red Sea microbial communities to elevated feed temperatures. A comparison of microbial abundance revealed a difference in bacterial distribution between the feed and biofilm samples. A shift in the biofilm microbial community and colonization of the membrane surface with thermophilic bacteria with the feed temperature increase was observed. The results of this study improve our understanding of biofouling propensity in MD that utilizes temperature-resilient feed waters. [Display omitted] .</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2022.118983</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biofilm distribution ; Intact cells ; Membrane distillation ; Temperature gradient ; Thermophilic microbial communities</subject><ispartof>Water research (Oxford), 2022-09, Vol.223, p.118983-118983, Article 118983</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-d861f7a0d11c0d24d1d1ebe6abc4545c506861eee0776907b6cbf0f3c9772fdd3</citedby><cites>FETCH-LOGICAL-c339t-d861f7a0d11c0d24d1d1ebe6abc4545c506861eee0776907b6cbf0f3c9772fdd3</cites><orcidid>0000-0002-7353-2118 ; 0000-0003-2095-4736 ; 0000-0003-2668-2057 ; 0000-0003-3566-6163 ; 0000-0003-0349-5099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2022.118983$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Elcik, Harun</creatorcontrib><creatorcontrib>Alpatova, Alla</creatorcontrib><creatorcontrib>Gonzalez-Gil, Graciela</creatorcontrib><creatorcontrib>Blankert, Bastiaan</creatorcontrib><creatorcontrib>Farhat, Nadia</creatorcontrib><creatorcontrib>Amin, Najat A.</creatorcontrib><creatorcontrib>Vrouwenvelder, Johannes S.</creatorcontrib><creatorcontrib>Ghaffour, Noreddine</creatorcontrib><title>Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions</title><title>Water research (Oxford)</title><description>•Biofilm thickness increased along the feed water path due to temperature gradient.•Diversity of EPS fluorescence peaks decreased with the increase in feed temperature.•Larger proportion of thermophilic bacteria colonized membranes at 55°C and 65°C.•Intact cells in biofilms were dominant over the damaged cells.•Biofilm maturation alleviated bacterial passage to permeate side. Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions. This study presents a comprehensive analysis of the spatial and temporal biofilm distribution and associated membrane fouling during direct contact MD (DCMD) of the Red Sea water. We found that structure and composition of the biofilm layer played a significant role in the extent of permeate flux decline, and biofilms that built up at 45°C had lower bacterial concentration but higher extracellular polymeric substances (EPS) content as compared to biofilms that formed at 55 °C and 65°C. Pore wetting and bacterial passage to the permeate side were initially observed but slowed down as operating time increased. Intact cells in biofilms dominated over the damaged cells at any tested condition emphasizing the high adaptivity of the Red Sea microbial communities to elevated feed temperatures. A comparison of microbial abundance revealed a difference in bacterial distribution between the feed and biofilm samples. A shift in the biofilm microbial community and colonization of the membrane surface with thermophilic bacteria with the feed temperature increase was observed. The results of this study improve our understanding of biofouling propensity in MD that utilizes temperature-resilient feed waters. [Display omitted] .</description><subject>Biofilm distribution</subject><subject>Intact cells</subject><subject>Membrane distillation</subject><subject>Temperature gradient</subject><subject>Thermophilic microbial communities</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQQC0EEqXwBxx85JLgLdsFCVVsUiUucLYce9K6SuJiO0X8PY7CmdOMxm8WP4RuKckpoeX9If9W0UPIGWEsp7Ruan6GVrSumowJUZ-jFSGCZ5QX4hJdhXAgJJG8WaHTUz9pa1S04w631nVu6ufUncDjuAc_qB6r0eBwTEzKd14ZC2MM2I44gEqbEznA0Ho1AjY2RNv3iXXjTOxdxLq3QyporN1o7PwSrtFFp_oAN39xjT6fnz42r9n2_eVt87jNNOdNzExd0q5SxFCqiWHCUEOhhVK1WhSi0AUpEwEApKrKhlRtqduOdFw3VcU6Y_ga3S1zj959TRCiHGzQkA4cwU1BsooUvEm6WELFgmrvQvDQyaNPd_sfSYmcNcuDXDTLWbNcNKe2h6UN0jdOFrwMOvnRYKwHHaVx9v8Bvx9Bi5E</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Elcik, Harun</creator><creator>Alpatova, Alla</creator><creator>Gonzalez-Gil, Graciela</creator><creator>Blankert, Bastiaan</creator><creator>Farhat, Nadia</creator><creator>Amin, Najat A.</creator><creator>Vrouwenvelder, Johannes S.</creator><creator>Ghaffour, Noreddine</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7353-2118</orcidid><orcidid>https://orcid.org/0000-0003-2095-4736</orcidid><orcidid>https://orcid.org/0000-0003-2668-2057</orcidid><orcidid>https://orcid.org/0000-0003-3566-6163</orcidid><orcidid>https://orcid.org/0000-0003-0349-5099</orcidid></search><sort><creationdate>20220901</creationdate><title>Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions</title><author>Elcik, Harun ; Alpatova, Alla ; Gonzalez-Gil, Graciela ; Blankert, Bastiaan ; Farhat, Nadia ; Amin, Najat A. ; Vrouwenvelder, Johannes S. ; Ghaffour, Noreddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-d861f7a0d11c0d24d1d1ebe6abc4545c506861eee0776907b6cbf0f3c9772fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biofilm distribution</topic><topic>Intact cells</topic><topic>Membrane distillation</topic><topic>Temperature gradient</topic><topic>Thermophilic microbial communities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elcik, Harun</creatorcontrib><creatorcontrib>Alpatova, Alla</creatorcontrib><creatorcontrib>Gonzalez-Gil, Graciela</creatorcontrib><creatorcontrib>Blankert, Bastiaan</creatorcontrib><creatorcontrib>Farhat, Nadia</creatorcontrib><creatorcontrib>Amin, Najat A.</creatorcontrib><creatorcontrib>Vrouwenvelder, Johannes S.</creatorcontrib><creatorcontrib>Ghaffour, Noreddine</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elcik, Harun</au><au>Alpatova, Alla</au><au>Gonzalez-Gil, Graciela</au><au>Blankert, Bastiaan</au><au>Farhat, Nadia</au><au>Amin, Najat A.</au><au>Vrouwenvelder, Johannes S.</au><au>Ghaffour, Noreddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions</atitle><jtitle>Water research (Oxford)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>223</volume><spage>118983</spage><epage>118983</epage><pages>118983-118983</pages><artnum>118983</artnum><issn>0043-1354</issn><eissn>1879-2448</eissn><abstract>•Biofilm thickness increased along the feed water path due to temperature gradient.•Diversity of EPS fluorescence peaks decreased with the increase in feed temperature.•Larger proportion of thermophilic bacteria colonized membranes at 55°C and 65°C.•Intact cells in biofilms were dominant over the damaged cells.•Biofilm maturation alleviated bacterial passage to permeate side. Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions. This study presents a comprehensive analysis of the spatial and temporal biofilm distribution and associated membrane fouling during direct contact MD (DCMD) of the Red Sea water. We found that structure and composition of the biofilm layer played a significant role in the extent of permeate flux decline, and biofilms that built up at 45°C had lower bacterial concentration but higher extracellular polymeric substances (EPS) content as compared to biofilms that formed at 55 °C and 65°C. Pore wetting and bacterial passage to the permeate side were initially observed but slowed down as operating time increased. Intact cells in biofilms dominated over the damaged cells at any tested condition emphasizing the high adaptivity of the Red Sea microbial communities to elevated feed temperatures. A comparison of microbial abundance revealed a difference in bacterial distribution between the feed and biofilm samples. A shift in the biofilm microbial community and colonization of the membrane surface with thermophilic bacteria with the feed temperature increase was observed. The results of this study improve our understanding of biofouling propensity in MD that utilizes temperature-resilient feed waters. [Display omitted] .</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.watres.2022.118983</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7353-2118</orcidid><orcidid>https://orcid.org/0000-0003-2095-4736</orcidid><orcidid>https://orcid.org/0000-0003-2668-2057</orcidid><orcidid>https://orcid.org/0000-0003-3566-6163</orcidid><orcidid>https://orcid.org/0000-0003-0349-5099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2022-09, Vol.223, p.118983-118983, Article 118983
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_2705399832
source Access via ScienceDirect (Elsevier)
subjects Biofilm distribution
Intact cells
Membrane distillation
Temperature gradient
Thermophilic microbial communities
title Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20biofouling%20over%20thermal%20and%20spatial%20gradients%20in%20seawater%20membrane%20distillation%20in%20hot%20climatic%20conditions&rft.jtitle=Water%20research%20(Oxford)&rft.au=Elcik,%20Harun&rft.date=2022-09-01&rft.volume=223&rft.spage=118983&rft.epage=118983&rft.pages=118983-118983&rft.artnum=118983&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2022.118983&rft_dat=%3Cproquest_cross%3E2705399832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705399832&rft_id=info:pmid/&rft_els_id=S0043135422009307&rfr_iscdi=true