Machine Learning Predicts the X‑ray Photoelectron Spectroscopy of the Solid Electrolyte Interface of Lithium Metal Battery

X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-09, Vol.13 (34), p.8047-8054
Hauptverfasser: Sun, Qintao, Xiang, Yan, Liu, Yue, Xu, Liang, Leng, Tianle, Ye, Yifan, Fortunelli, Alessandro, Goddard, William A, Cheng, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital details missing. By combining hybrid ab initio and reactive molecular dynamics (HAIR) and machine learning (ML) models, we present an artificial intelligence ab initio (AI-ai) framework to predict the XPS of a SEI. A localized high-concentration electrolyte with a Li metal anode is simulated with a HAIR scheme for ∼3 ns. Taking the local many-body tensor representation as a descriptor, four ML models are utilized to predict the core level shifts. Overall, extreme gradient boosting exhibits the highest accuracy and lowest variance (with errors ≤ 0.05 eV). Such an AI-ai model enables the XPS predictions of ten thousand frames with marginal cost.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c02222