Machine Learning Predicts the X‑ray Photoelectron Spectroscopy of the Solid Electrolyte Interface of Lithium Metal Battery
X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital det...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2022-09, Vol.13 (34), p.8047-8054 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital details missing. By combining hybrid ab initio and reactive molecular dynamics (HAIR) and machine learning (ML) models, we present an artificial intelligence ab initio (AI-ai) framework to predict the XPS of a SEI. A localized high-concentration electrolyte with a Li metal anode is simulated with a HAIR scheme for ∼3 ns. Taking the local many-body tensor representation as a descriptor, four ML models are utilized to predict the core level shifts. Overall, extreme gradient boosting exhibits the highest accuracy and lowest variance (with errors ≤ 0.05 eV). Such an AI-ai model enables the XPS predictions of ten thousand frames with marginal cost. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.2c02222 |