Understanding Early Pandemic Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in a Medical Center by Incorporating Public Sequencing Databases to Mitigate Bias

Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of infectious diseases 2022-11, Vol.226 (10), p.1704-1711
Hauptverfasser: Turcinovic, Jacquelyn, Schaeffer, Beau, Taylor, Bradford P, Bouton, Tara C, Odom-Mabey, Aubrey R, Weber, Sarah E, Lodi, Sara, Ragan, Elizabeth J, Connor, John H, Jacobson, Karen R, Hanage, William P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1711
container_issue 10
container_start_page 1704
container_title The Journal of infectious diseases
container_volume 226
creator Turcinovic, Jacquelyn
Schaeffer, Beau
Taylor, Bradford P
Bouton, Tara C
Odom-Mabey, Aubrey R
Weber, Sarah E
Lodi, Sara
Ragan, Elizabeth J
Connor, John H
Jacobson, Karen R
Hanage, William P
description Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.
doi_str_mv 10.1093/infdis/jiac348
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2705398275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705398275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-3b782378c4aa4162f44c7c361c62cbde07d2bc5c92e149e68a7ec9d8b3f08e963</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxS0EokvhyhH5yCWt_yR2fCzbApVaUdH2HE3sSeUqsRfbqZTPxJckyy6cRjN6896MfoR85OyMMyPPfRicz-fPHqys21dkwxupK6W4fE02jAlR8daYE_Iu52fGWC2VfktOZGOM5FxtyO_H4DDlAsH58ESvII0LvVs7nLyl9_iCCemFnQvSn5h3PkGJaaH3S3ApTki3McUALz7NmQr6kCDkyefsY6A-UKC36LyFkW4xFEy0X-h1sDHt4mq0D7yb-_Fv0K8Zg91PLqFADxkzLZHe-uKfYA3_4iG_J28GGDN-ONZT8vj16mH7vbr58e16e3FTWSmbUslet0Lq1tYANVdiqGurrVTcKmF7h0w70dvGGoG8Nqha0GiNa3s5sBaNkqfk88F3l-J6Vi7d-pLFcYSAcc6d0KyRphW6WaVnB6lNMeeEQ7dLfoK0dJx1e0DdAVB3BLQufDp6z_2E7r_8HxH5B43XkmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705398275</pqid></control><display><type>article</type><title>Understanding Early Pandemic Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in a Medical Center by Incorporating Public Sequencing Databases to Mitigate Bias</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Turcinovic, Jacquelyn ; Schaeffer, Beau ; Taylor, Bradford P ; Bouton, Tara C ; Odom-Mabey, Aubrey R ; Weber, Sarah E ; Lodi, Sara ; Ragan, Elizabeth J ; Connor, John H ; Jacobson, Karen R ; Hanage, William P</creator><creatorcontrib>Turcinovic, Jacquelyn ; Schaeffer, Beau ; Taylor, Bradford P ; Bouton, Tara C ; Odom-Mabey, Aubrey R ; Weber, Sarah E ; Lodi, Sara ; Ragan, Elizabeth J ; Connor, John H ; Jacobson, Karen R ; Hanage, William P</creatorcontrib><description>Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.</description><identifier>ISSN: 0022-1899</identifier><identifier>ISSN: 1537-6613</identifier><identifier>EISSN: 1537-6613</identifier><identifier>DOI: 10.1093/infdis/jiac348</identifier><identifier>PMID: 35993116</identifier><language>eng</language><publisher>United States</publisher><subject>COVID-19 - epidemiology ; Health Personnel ; Hospitals ; Humans ; Infection Control ; Pandemics - prevention &amp; control ; SARS-CoV-2 - genetics</subject><ispartof>The Journal of infectious diseases, 2022-11, Vol.226 (10), p.1704-1711</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-3b782378c4aa4162f44c7c361c62cbde07d2bc5c92e149e68a7ec9d8b3f08e963</citedby><cites>FETCH-LOGICAL-c335t-3b782378c4aa4162f44c7c361c62cbde07d2bc5c92e149e68a7ec9d8b3f08e963</cites><orcidid>0000-0001-7808-955X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35993116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turcinovic, Jacquelyn</creatorcontrib><creatorcontrib>Schaeffer, Beau</creatorcontrib><creatorcontrib>Taylor, Bradford P</creatorcontrib><creatorcontrib>Bouton, Tara C</creatorcontrib><creatorcontrib>Odom-Mabey, Aubrey R</creatorcontrib><creatorcontrib>Weber, Sarah E</creatorcontrib><creatorcontrib>Lodi, Sara</creatorcontrib><creatorcontrib>Ragan, Elizabeth J</creatorcontrib><creatorcontrib>Connor, John H</creatorcontrib><creatorcontrib>Jacobson, Karen R</creatorcontrib><creatorcontrib>Hanage, William P</creatorcontrib><title>Understanding Early Pandemic Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in a Medical Center by Incorporating Public Sequencing Databases to Mitigate Bias</title><title>The Journal of infectious diseases</title><addtitle>J Infect Dis</addtitle><description>Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.</description><subject>COVID-19 - epidemiology</subject><subject>Health Personnel</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infection Control</subject><subject>Pandemics - prevention &amp; control</subject><subject>SARS-CoV-2 - genetics</subject><issn>0022-1899</issn><issn>1537-6613</issn><issn>1537-6613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU9v1DAQxS0EokvhyhH5yCWt_yR2fCzbApVaUdH2HE3sSeUqsRfbqZTPxJckyy6cRjN6896MfoR85OyMMyPPfRicz-fPHqys21dkwxupK6W4fE02jAlR8daYE_Iu52fGWC2VfktOZGOM5FxtyO_H4DDlAsH58ESvII0LvVs7nLyl9_iCCemFnQvSn5h3PkGJaaH3S3ApTki3McUALz7NmQr6kCDkyefsY6A-UKC36LyFkW4xFEy0X-h1sDHt4mq0D7yb-_Fv0K8Zg91PLqFADxkzLZHe-uKfYA3_4iG_J28GGDN-ONZT8vj16mH7vbr58e16e3FTWSmbUslet0Lq1tYANVdiqGurrVTcKmF7h0w70dvGGoG8Nqha0GiNa3s5sBaNkqfk88F3l-J6Vi7d-pLFcYSAcc6d0KyRphW6WaVnB6lNMeeEQ7dLfoK0dJx1e0DdAVB3BLQufDp6z_2E7r_8HxH5B43XkmA</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Turcinovic, Jacquelyn</creator><creator>Schaeffer, Beau</creator><creator>Taylor, Bradford P</creator><creator>Bouton, Tara C</creator><creator>Odom-Mabey, Aubrey R</creator><creator>Weber, Sarah E</creator><creator>Lodi, Sara</creator><creator>Ragan, Elizabeth J</creator><creator>Connor, John H</creator><creator>Jacobson, Karen R</creator><creator>Hanage, William P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7808-955X</orcidid></search><sort><creationdate>20221111</creationdate><title>Understanding Early Pandemic Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in a Medical Center by Incorporating Public Sequencing Databases to Mitigate Bias</title><author>Turcinovic, Jacquelyn ; Schaeffer, Beau ; Taylor, Bradford P ; Bouton, Tara C ; Odom-Mabey, Aubrey R ; Weber, Sarah E ; Lodi, Sara ; Ragan, Elizabeth J ; Connor, John H ; Jacobson, Karen R ; Hanage, William P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-3b782378c4aa4162f44c7c361c62cbde07d2bc5c92e149e68a7ec9d8b3f08e963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>COVID-19 - epidemiology</topic><topic>Health Personnel</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infection Control</topic><topic>Pandemics - prevention &amp; control</topic><topic>SARS-CoV-2 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turcinovic, Jacquelyn</creatorcontrib><creatorcontrib>Schaeffer, Beau</creatorcontrib><creatorcontrib>Taylor, Bradford P</creatorcontrib><creatorcontrib>Bouton, Tara C</creatorcontrib><creatorcontrib>Odom-Mabey, Aubrey R</creatorcontrib><creatorcontrib>Weber, Sarah E</creatorcontrib><creatorcontrib>Lodi, Sara</creatorcontrib><creatorcontrib>Ragan, Elizabeth J</creatorcontrib><creatorcontrib>Connor, John H</creatorcontrib><creatorcontrib>Jacobson, Karen R</creatorcontrib><creatorcontrib>Hanage, William P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turcinovic, Jacquelyn</au><au>Schaeffer, Beau</au><au>Taylor, Bradford P</au><au>Bouton, Tara C</au><au>Odom-Mabey, Aubrey R</au><au>Weber, Sarah E</au><au>Lodi, Sara</au><au>Ragan, Elizabeth J</au><au>Connor, John H</au><au>Jacobson, Karen R</au><au>Hanage, William P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Early Pandemic Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in a Medical Center by Incorporating Public Sequencing Databases to Mitigate Bias</atitle><jtitle>The Journal of infectious diseases</jtitle><addtitle>J Infect Dis</addtitle><date>2022-11-11</date><risdate>2022</risdate><volume>226</volume><issue>10</issue><spage>1704</spage><epage>1711</epage><pages>1704-1711</pages><issn>0022-1899</issn><issn>1537-6613</issn><eissn>1537-6613</eissn><abstract>Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.</abstract><cop>United States</cop><pmid>35993116</pmid><doi>10.1093/infdis/jiac348</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7808-955X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1899
ispartof The Journal of infectious diseases, 2022-11, Vol.226 (10), p.1704-1711
issn 0022-1899
1537-6613
1537-6613
language eng
recordid cdi_proquest_miscellaneous_2705398275
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection
subjects COVID-19 - epidemiology
Health Personnel
Hospitals
Humans
Infection Control
Pandemics - prevention & control
SARS-CoV-2 - genetics
title Understanding Early Pandemic Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in a Medical Center by Incorporating Public Sequencing Databases to Mitigate Bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Early%20Pandemic%20Severe%20Acute%20Respiratory%20Syndrome%20Coronavirus%202%20Transmission%20in%20a%20Medical%20Center%20by%20Incorporating%20Public%20Sequencing%20Databases%20to%20Mitigate%20Bias&rft.jtitle=The%20Journal%20of%20infectious%20diseases&rft.au=Turcinovic,%20Jacquelyn&rft.date=2022-11-11&rft.volume=226&rft.issue=10&rft.spage=1704&rft.epage=1711&rft.pages=1704-1711&rft.issn=0022-1899&rft.eissn=1537-6613&rft_id=info:doi/10.1093/infdis/jiac348&rft_dat=%3Cproquest_cross%3E2705398275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705398275&rft_id=info:pmid/35993116&rfr_iscdi=true