Self‐Protecting Aqueous Lithium‐Ion Batteries

Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-09, Vol.18 (38), p.e2203035-n/a
Hauptverfasser: Yang, Yuewang, Bai, Zhaowen, Liu, Sijing, Zhu, Yinggang, Zheng, Jiongzhi, Chen, Guohua, Huang, Baoling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2203035
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Yang, Yuewang
Bai, Zhaowen
Liu, Sijing
Zhu, Yinggang
Zheng, Jiongzhi
Chen, Guohua
Huang, Baoling
description Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures. Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.
doi_str_mv 10.1002/smll.202203035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2704873255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704873255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wU3bqbem0wmM8ta_CmMKFTXISQZTZmfmswg3fkIPqNPYkpFwY2re-B-597DIeQUYYoA9CI0dT2lQCkwYHyPjDBDlmQ5LfZ_NMIhOQphBcCQpmJEcGnr6vP948F3vdW9a58ns9fBdkOYlK5_cUMTl4uunVyqvrfe2XBMDipVB3vyPcfk6frqcX6blPc3i_msTDTjwBOFBeM8zQxqZkSKUOS54LTSoHSKFpAjWJOhMqbgRiuNojJZYSFTObWmYGNyvru79l1MFHrZuKBtXat2G09SAWkuGOU8omd_0FU3-DamixSK-IpxFqnpjtK-C8HbSq69a5TfSAS5bVBuG5Q_DUZDsTO8udpu_qHl8q4sf71f6EZ1Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717151353</pqid></control><display><type>article</type><title>Self‐Protecting Aqueous Lithium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Yuewang ; Bai, Zhaowen ; Liu, Sijing ; Zhu, Yinggang ; Zheng, Jiongzhi ; Chen, Guohua ; Huang, Baoling</creator><creatorcontrib>Yang, Yuewang ; Bai, Zhaowen ; Liu, Sijing ; Zhu, Yinggang ; Zheng, Jiongzhi ; Chen, Guohua ; Huang, Baoling</creatorcontrib><description>Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures. Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202203035</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous lithium‐ion batteries ; Emergency procedures ; Energy storage ; Flame retardants ; High temperature ; Hydrogels ; Hydrophilicity ; Ion transport ; Lithium ; Lithium manganese oxides ; Lithium-ion batteries ; Nanotechnology ; Operating temperature ; Overheating ; Rechargeable batteries ; Separators ; smart batteries ; Temperature ; thermos‐responsive hydrogels ; thermos‐responsive separators</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (38), p.e2203035-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</citedby><cites>FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</cites><orcidid>0000-0001-7507-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202203035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202203035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Yuewang</creatorcontrib><creatorcontrib>Bai, Zhaowen</creatorcontrib><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Zhu, Yinggang</creatorcontrib><creatorcontrib>Zheng, Jiongzhi</creatorcontrib><creatorcontrib>Chen, Guohua</creatorcontrib><creatorcontrib>Huang, Baoling</creatorcontrib><title>Self‐Protecting Aqueous Lithium‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures. Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.</description><subject>aqueous lithium‐ion batteries</subject><subject>Emergency procedures</subject><subject>Energy storage</subject><subject>Flame retardants</subject><subject>High temperature</subject><subject>Hydrogels</subject><subject>Hydrophilicity</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium manganese oxides</subject><subject>Lithium-ion batteries</subject><subject>Nanotechnology</subject><subject>Operating temperature</subject><subject>Overheating</subject><subject>Rechargeable batteries</subject><subject>Separators</subject><subject>smart batteries</subject><subject>Temperature</subject><subject>thermos‐responsive hydrogels</subject><subject>thermos‐responsive separators</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wU3bqbem0wmM8ta_CmMKFTXISQZTZmfmswg3fkIPqNPYkpFwY2re-B-597DIeQUYYoA9CI0dT2lQCkwYHyPjDBDlmQ5LfZ_NMIhOQphBcCQpmJEcGnr6vP948F3vdW9a58ns9fBdkOYlK5_cUMTl4uunVyqvrfe2XBMDipVB3vyPcfk6frqcX6blPc3i_msTDTjwBOFBeM8zQxqZkSKUOS54LTSoHSKFpAjWJOhMqbgRiuNojJZYSFTObWmYGNyvru79l1MFHrZuKBtXat2G09SAWkuGOU8omd_0FU3-DamixSK-IpxFqnpjtK-C8HbSq69a5TfSAS5bVBuG5Q_DUZDsTO8udpu_qHl8q4sf71f6EZ1Hw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Yang, Yuewang</creator><creator>Bai, Zhaowen</creator><creator>Liu, Sijing</creator><creator>Zhu, Yinggang</creator><creator>Zheng, Jiongzhi</creator><creator>Chen, Guohua</creator><creator>Huang, Baoling</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7507-5371</orcidid></search><sort><creationdate>20220901</creationdate><title>Self‐Protecting Aqueous Lithium‐Ion Batteries</title><author>Yang, Yuewang ; Bai, Zhaowen ; Liu, Sijing ; Zhu, Yinggang ; Zheng, Jiongzhi ; Chen, Guohua ; Huang, Baoling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aqueous lithium‐ion batteries</topic><topic>Emergency procedures</topic><topic>Energy storage</topic><topic>Flame retardants</topic><topic>High temperature</topic><topic>Hydrogels</topic><topic>Hydrophilicity</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium manganese oxides</topic><topic>Lithium-ion batteries</topic><topic>Nanotechnology</topic><topic>Operating temperature</topic><topic>Overheating</topic><topic>Rechargeable batteries</topic><topic>Separators</topic><topic>smart batteries</topic><topic>Temperature</topic><topic>thermos‐responsive hydrogels</topic><topic>thermos‐responsive separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuewang</creatorcontrib><creatorcontrib>Bai, Zhaowen</creatorcontrib><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Zhu, Yinggang</creatorcontrib><creatorcontrib>Zheng, Jiongzhi</creatorcontrib><creatorcontrib>Chen, Guohua</creatorcontrib><creatorcontrib>Huang, Baoling</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuewang</au><au>Bai, Zhaowen</au><au>Liu, Sijing</au><au>Zhu, Yinggang</au><au>Zheng, Jiongzhi</au><au>Chen, Guohua</au><au>Huang, Baoling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Protecting Aqueous Lithium‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>38</issue><spage>e2203035</spage><epage>n/a</epage><pages>e2203035-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures. Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202203035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7507-5371</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (38), p.e2203035-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2704873255
source Wiley Online Library Journals Frontfile Complete
subjects aqueous lithium‐ion batteries
Emergency procedures
Energy storage
Flame retardants
High temperature
Hydrogels
Hydrophilicity
Ion transport
Lithium
Lithium manganese oxides
Lithium-ion batteries
Nanotechnology
Operating temperature
Overheating
Rechargeable batteries
Separators
smart batteries
Temperature
thermos‐responsive hydrogels
thermos‐responsive separators
title Self‐Protecting Aqueous Lithium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Protecting%20Aqueous%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Yuewang&rft.date=2022-09-01&rft.volume=18&rft.issue=38&rft.spage=e2203035&rft.epage=n/a&rft.pages=e2203035-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202203035&rft_dat=%3Cproquest_cross%3E2704873255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717151353&rft_id=info:pmid/&rfr_iscdi=true