Self‐Protecting Aqueous Lithium‐Ion Batteries
Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regul...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-09, Vol.18 (38), p.e2203035-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e2203035 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Yang, Yuewang Bai, Zhaowen Liu, Sijing Zhu, Yinggang Zheng, Jiongzhi Chen, Guohua Huang, Baoling |
description | Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures.
Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries. |
doi_str_mv | 10.1002/smll.202203035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2704873255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704873255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wU3bqbem0wmM8ta_CmMKFTXISQZTZmfmswg3fkIPqNPYkpFwY2re-B-597DIeQUYYoA9CI0dT2lQCkwYHyPjDBDlmQ5LfZ_NMIhOQphBcCQpmJEcGnr6vP948F3vdW9a58ns9fBdkOYlK5_cUMTl4uunVyqvrfe2XBMDipVB3vyPcfk6frqcX6blPc3i_msTDTjwBOFBeM8zQxqZkSKUOS54LTSoHSKFpAjWJOhMqbgRiuNojJZYSFTObWmYGNyvru79l1MFHrZuKBtXat2G09SAWkuGOU8omd_0FU3-DamixSK-IpxFqnpjtK-C8HbSq69a5TfSAS5bVBuG5Q_DUZDsTO8udpu_qHl8q4sf71f6EZ1Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717151353</pqid></control><display><type>article</type><title>Self‐Protecting Aqueous Lithium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Yuewang ; Bai, Zhaowen ; Liu, Sijing ; Zhu, Yinggang ; Zheng, Jiongzhi ; Chen, Guohua ; Huang, Baoling</creator><creatorcontrib>Yang, Yuewang ; Bai, Zhaowen ; Liu, Sijing ; Zhu, Yinggang ; Zheng, Jiongzhi ; Chen, Guohua ; Huang, Baoling</creatorcontrib><description>Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures.
Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202203035</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous lithium‐ion batteries ; Emergency procedures ; Energy storage ; Flame retardants ; High temperature ; Hydrogels ; Hydrophilicity ; Ion transport ; Lithium ; Lithium manganese oxides ; Lithium-ion batteries ; Nanotechnology ; Operating temperature ; Overheating ; Rechargeable batteries ; Separators ; smart batteries ; Temperature ; thermos‐responsive hydrogels ; thermos‐responsive separators</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (38), p.e2203035-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</citedby><cites>FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</cites><orcidid>0000-0001-7507-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202203035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202203035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Yuewang</creatorcontrib><creatorcontrib>Bai, Zhaowen</creatorcontrib><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Zhu, Yinggang</creatorcontrib><creatorcontrib>Zheng, Jiongzhi</creatorcontrib><creatorcontrib>Chen, Guohua</creatorcontrib><creatorcontrib>Huang, Baoling</creatorcontrib><title>Self‐Protecting Aqueous Lithium‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures.
Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.</description><subject>aqueous lithium‐ion batteries</subject><subject>Emergency procedures</subject><subject>Energy storage</subject><subject>Flame retardants</subject><subject>High temperature</subject><subject>Hydrogels</subject><subject>Hydrophilicity</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium manganese oxides</subject><subject>Lithium-ion batteries</subject><subject>Nanotechnology</subject><subject>Operating temperature</subject><subject>Overheating</subject><subject>Rechargeable batteries</subject><subject>Separators</subject><subject>smart batteries</subject><subject>Temperature</subject><subject>thermos‐responsive hydrogels</subject><subject>thermos‐responsive separators</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wU3bqbem0wmM8ta_CmMKFTXISQZTZmfmswg3fkIPqNPYkpFwY2re-B-597DIeQUYYoA9CI0dT2lQCkwYHyPjDBDlmQ5LfZ_NMIhOQphBcCQpmJEcGnr6vP948F3vdW9a58ns9fBdkOYlK5_cUMTl4uunVyqvrfe2XBMDipVB3vyPcfk6frqcX6blPc3i_msTDTjwBOFBeM8zQxqZkSKUOS54LTSoHSKFpAjWJOhMqbgRiuNojJZYSFTObWmYGNyvru79l1MFHrZuKBtXat2G09SAWkuGOU8omd_0FU3-DamixSK-IpxFqnpjtK-C8HbSq69a5TfSAS5bVBuG5Q_DUZDsTO8udpu_qHl8q4sf71f6EZ1Hw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Yang, Yuewang</creator><creator>Bai, Zhaowen</creator><creator>Liu, Sijing</creator><creator>Zhu, Yinggang</creator><creator>Zheng, Jiongzhi</creator><creator>Chen, Guohua</creator><creator>Huang, Baoling</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7507-5371</orcidid></search><sort><creationdate>20220901</creationdate><title>Self‐Protecting Aqueous Lithium‐Ion Batteries</title><author>Yang, Yuewang ; Bai, Zhaowen ; Liu, Sijing ; Zhu, Yinggang ; Zheng, Jiongzhi ; Chen, Guohua ; Huang, Baoling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3505-a1935546d1c3d7410988752fc0ac41e01510ed61add95dcac17fd69e06a82ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aqueous lithium‐ion batteries</topic><topic>Emergency procedures</topic><topic>Energy storage</topic><topic>Flame retardants</topic><topic>High temperature</topic><topic>Hydrogels</topic><topic>Hydrophilicity</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium manganese oxides</topic><topic>Lithium-ion batteries</topic><topic>Nanotechnology</topic><topic>Operating temperature</topic><topic>Overheating</topic><topic>Rechargeable batteries</topic><topic>Separators</topic><topic>smart batteries</topic><topic>Temperature</topic><topic>thermos‐responsive hydrogels</topic><topic>thermos‐responsive separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuewang</creatorcontrib><creatorcontrib>Bai, Zhaowen</creatorcontrib><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Zhu, Yinggang</creatorcontrib><creatorcontrib>Zheng, Jiongzhi</creatorcontrib><creatorcontrib>Chen, Guohua</creatorcontrib><creatorcontrib>Huang, Baoling</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuewang</au><au>Bai, Zhaowen</au><au>Liu, Sijing</au><au>Zhu, Yinggang</au><au>Zheng, Jiongzhi</au><au>Chen, Guohua</au><au>Huang, Baoling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Protecting Aqueous Lithium‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>18</volume><issue>38</issue><spage>e2203035</spage><epage>n/a</epage><pages>e2203035-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Capacity degradation and destructive hazards are two major challenges for the operation of lithium‐ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one‐off self‐protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self‐protecting aqueous lithium‐ion batteries are developed using thermos‐responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos‐responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos‐responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3) and concentration (1 m) are selected in the electrolyte to achieve self‐protection without sacrificing battery performance. The shut‐off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self‐protecting LiMn2O4/carbon coated LiTi2(PO4)3 (LMO/C‐LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures.
Smart aqueous LiMn2O4/carbon‐coated LiTi2(PO4)3 (LMO/C‐LTP) batteries using thermos‐responsive separators are developed, which are fabricated by in situ polymerization of P(NIPAm‐Am) hydrogels on the surface of ahydrophilic membrane. The battery can switch off spontaneously at high temperatures and resume its normal operation when cooled down. This work provides effective and smart approaches to extend lifespan and ensure safety of aqueous batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202203035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7507-5371</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-09, Vol.18 (38), p.e2203035-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2704873255 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aqueous lithium‐ion batteries Emergency procedures Energy storage Flame retardants High temperature Hydrogels Hydrophilicity Ion transport Lithium Lithium manganese oxides Lithium-ion batteries Nanotechnology Operating temperature Overheating Rechargeable batteries Separators smart batteries Temperature thermos‐responsive hydrogels thermos‐responsive separators |
title | Self‐Protecting Aqueous Lithium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Protecting%20Aqueous%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Yuewang&rft.date=2022-09-01&rft.volume=18&rft.issue=38&rft.spage=e2203035&rft.epage=n/a&rft.pages=e2203035-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202203035&rft_dat=%3Cproquest_cross%3E2704873255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717151353&rft_id=info:pmid/&rfr_iscdi=true |