PK-RNN-V E: A deep learning model approach to vancomycin therapeutic drug monitoring using electronic health record data
[Display omitted] •PK-RNN is an AI-based pharmacokinetic (PK) model for therapeutic drug monitoring.•PK-RNN uses RNN to makes personalized prediction integrating individual EHR data.•PK-RNN integrates RNN and pharmacokinetic equations into end-to-end model.•PK-RNN-V outperformed Bayesian based PK mo...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2022-09, Vol.133, p.104166-104166, Article 104166 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104166 |
---|---|
container_issue | |
container_start_page | 104166 |
container_title | Journal of biomedical informatics |
container_volume | 133 |
creator | Nigo, Masayuki Tran, Hong Thoai Nga Xie, Ziqian Feng, Han Mao, Bingyu Rasmy, Laila Miao, Hongyu Zhi, Degui |
description | [Display omitted]
•PK-RNN is an AI-based pharmacokinetic (PK) model for therapeutic drug monitoring.•PK-RNN uses RNN to makes personalized prediction integrating individual EHR data.•PK-RNN integrates RNN and pharmacokinetic equations into end-to-end model.•PK-RNN-V outperformed Bayesian based PK model in predicting vancomycin levels.•PK-RNN is generalizable to other drugs, enabling new models for precision dosing.
Vancomycin is a commonly used antimicrobial in hospitals, and therapeutic drug monitoring (TDM) is required to optimize its efficacy and avoid toxicities. Bayesian models are currently recommended to predict the antibiotic levels. These models, however, although using carefully designed lab observations, were often developed in limited patient populations. The increasing availability of electronic health record (EHR) data offers an opportunity to develop TDM models for real-world patient populations. Here, we present a deep learning-based pharmacokinetic prediction model for vancomycin (PK-RNN-V E) using a large EHR dataset of 5,483 patients with 55,336 vancomycin administrations. PK-RNN-V E takes the patient’s real-time sparse and irregular observations and offers dynamic predictions. Our results show that RNN-PK-V E offers a root mean squared error (RMSE) of 5.39 and outperforms the traditional Bayesian model (VTDM model) with an RMSE of 6.29. We believe that PK-RNN-V E can provide a pharmacokinetic model for vancomycin and other antimicrobials that require TDM. |
doi_str_mv | 10.1016/j.jbi.2022.104166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2704871981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046422001782</els_id><sourcerecordid>2704871981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-def484ce63d6b32ce324315dbb4467a1280c35c39389cc6f905a1a5beb074a513</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwAey8ZJNix46TwqpCvERVEAK2ljOeUldpHGynon9PoiKWbOale0e6J0nOGZ0wyuTlerKu7CSjWdbvgkl5kIxYzrOUipIe_s1SHCcnIawpZSzP5Sj5fnlKXxeL9IPcXpEZMYgtqVH7xjafZOMM1kS3rXcaViQ6stUNuM0ObEPiCr1usYsWiPHdoG5sdH4wdmGoWCNE31-BrFDXcUU8gvOGGB31aXK01HXAs98-Tt7vbt9uHtL58_3jzWyeAi94TA0uRSkAJTey4hkgzwRnuakqIWShWVZS4DnwKS-nAHI5pblmOq-wooXQOePj5GL_tw_x1WGIamMDYF3rBl0XVFb0hAo2LQcp20vBuxA8LlXr7Ub7nWJUDZTVWvWU1UBZ7Sn3nuu9B_sMW4teBbDYABrbh43KOPuP-wcVT4Vf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704871981</pqid></control><display><type>article</type><title>PK-RNN-V E: A deep learning model approach to vancomycin therapeutic drug monitoring using electronic health record data</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nigo, Masayuki ; Tran, Hong Thoai Nga ; Xie, Ziqian ; Feng, Han ; Mao, Bingyu ; Rasmy, Laila ; Miao, Hongyu ; Zhi, Degui</creator><creatorcontrib>Nigo, Masayuki ; Tran, Hong Thoai Nga ; Xie, Ziqian ; Feng, Han ; Mao, Bingyu ; Rasmy, Laila ; Miao, Hongyu ; Zhi, Degui</creatorcontrib><description>[Display omitted]
•PK-RNN is an AI-based pharmacokinetic (PK) model for therapeutic drug monitoring.•PK-RNN uses RNN to makes personalized prediction integrating individual EHR data.•PK-RNN integrates RNN and pharmacokinetic equations into end-to-end model.•PK-RNN-V outperformed Bayesian based PK model in predicting vancomycin levels.•PK-RNN is generalizable to other drugs, enabling new models for precision dosing.
Vancomycin is a commonly used antimicrobial in hospitals, and therapeutic drug monitoring (TDM) is required to optimize its efficacy and avoid toxicities. Bayesian models are currently recommended to predict the antibiotic levels. These models, however, although using carefully designed lab observations, were often developed in limited patient populations. The increasing availability of electronic health record (EHR) data offers an opportunity to develop TDM models for real-world patient populations. Here, we present a deep learning-based pharmacokinetic prediction model for vancomycin (PK-RNN-V E) using a large EHR dataset of 5,483 patients with 55,336 vancomycin administrations. PK-RNN-V E takes the patient’s real-time sparse and irregular observations and offers dynamic predictions. Our results show that RNN-PK-V E offers a root mean squared error (RMSE) of 5.39 and outperforms the traditional Bayesian model (VTDM model) with an RMSE of 6.29. We believe that PK-RNN-V E can provide a pharmacokinetic model for vancomycin and other antimicrobials that require TDM.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2022.104166</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bayesian model ; Deep learning ; Pharmacokinetics ; Recurrent neural network ; Vancomycin</subject><ispartof>Journal of biomedical informatics, 2022-09, Vol.133, p.104166-104166, Article 104166</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-def484ce63d6b32ce324315dbb4467a1280c35c39389cc6f905a1a5beb074a513</citedby><cites>FETCH-LOGICAL-c373t-def484ce63d6b32ce324315dbb4467a1280c35c39389cc6f905a1a5beb074a513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2022.104166$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nigo, Masayuki</creatorcontrib><creatorcontrib>Tran, Hong Thoai Nga</creatorcontrib><creatorcontrib>Xie, Ziqian</creatorcontrib><creatorcontrib>Feng, Han</creatorcontrib><creatorcontrib>Mao, Bingyu</creatorcontrib><creatorcontrib>Rasmy, Laila</creatorcontrib><creatorcontrib>Miao, Hongyu</creatorcontrib><creatorcontrib>Zhi, Degui</creatorcontrib><title>PK-RNN-V E: A deep learning model approach to vancomycin therapeutic drug monitoring using electronic health record data</title><title>Journal of biomedical informatics</title><description>[Display omitted]
•PK-RNN is an AI-based pharmacokinetic (PK) model for therapeutic drug monitoring.•PK-RNN uses RNN to makes personalized prediction integrating individual EHR data.•PK-RNN integrates RNN and pharmacokinetic equations into end-to-end model.•PK-RNN-V outperformed Bayesian based PK model in predicting vancomycin levels.•PK-RNN is generalizable to other drugs, enabling new models for precision dosing.
Vancomycin is a commonly used antimicrobial in hospitals, and therapeutic drug monitoring (TDM) is required to optimize its efficacy and avoid toxicities. Bayesian models are currently recommended to predict the antibiotic levels. These models, however, although using carefully designed lab observations, were often developed in limited patient populations. The increasing availability of electronic health record (EHR) data offers an opportunity to develop TDM models for real-world patient populations. Here, we present a deep learning-based pharmacokinetic prediction model for vancomycin (PK-RNN-V E) using a large EHR dataset of 5,483 patients with 55,336 vancomycin administrations. PK-RNN-V E takes the patient’s real-time sparse and irregular observations and offers dynamic predictions. Our results show that RNN-PK-V E offers a root mean squared error (RMSE) of 5.39 and outperforms the traditional Bayesian model (VTDM model) with an RMSE of 6.29. We believe that PK-RNN-V E can provide a pharmacokinetic model for vancomycin and other antimicrobials that require TDM.</description><subject>Bayesian model</subject><subject>Deep learning</subject><subject>Pharmacokinetics</subject><subject>Recurrent neural network</subject><subject>Vancomycin</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwAey8ZJNix46TwqpCvERVEAK2ljOeUldpHGynon9PoiKWbOale0e6J0nOGZ0wyuTlerKu7CSjWdbvgkl5kIxYzrOUipIe_s1SHCcnIawpZSzP5Sj5fnlKXxeL9IPcXpEZMYgtqVH7xjafZOMM1kS3rXcaViQ6stUNuM0ObEPiCr1usYsWiPHdoG5sdH4wdmGoWCNE31-BrFDXcUU8gvOGGB31aXK01HXAs98-Tt7vbt9uHtL58_3jzWyeAi94TA0uRSkAJTey4hkgzwRnuakqIWShWVZS4DnwKS-nAHI5pblmOq-wooXQOePj5GL_tw_x1WGIamMDYF3rBl0XVFb0hAo2LQcp20vBuxA8LlXr7Ub7nWJUDZTVWvWU1UBZ7Sn3nuu9B_sMW4teBbDYABrbh43KOPuP-wcVT4Vf</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Nigo, Masayuki</creator><creator>Tran, Hong Thoai Nga</creator><creator>Xie, Ziqian</creator><creator>Feng, Han</creator><creator>Mao, Bingyu</creator><creator>Rasmy, Laila</creator><creator>Miao, Hongyu</creator><creator>Zhi, Degui</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202209</creationdate><title>PK-RNN-V E: A deep learning model approach to vancomycin therapeutic drug monitoring using electronic health record data</title><author>Nigo, Masayuki ; Tran, Hong Thoai Nga ; Xie, Ziqian ; Feng, Han ; Mao, Bingyu ; Rasmy, Laila ; Miao, Hongyu ; Zhi, Degui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-def484ce63d6b32ce324315dbb4467a1280c35c39389cc6f905a1a5beb074a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian model</topic><topic>Deep learning</topic><topic>Pharmacokinetics</topic><topic>Recurrent neural network</topic><topic>Vancomycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nigo, Masayuki</creatorcontrib><creatorcontrib>Tran, Hong Thoai Nga</creatorcontrib><creatorcontrib>Xie, Ziqian</creatorcontrib><creatorcontrib>Feng, Han</creatorcontrib><creatorcontrib>Mao, Bingyu</creatorcontrib><creatorcontrib>Rasmy, Laila</creatorcontrib><creatorcontrib>Miao, Hongyu</creatorcontrib><creatorcontrib>Zhi, Degui</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nigo, Masayuki</au><au>Tran, Hong Thoai Nga</au><au>Xie, Ziqian</au><au>Feng, Han</au><au>Mao, Bingyu</au><au>Rasmy, Laila</au><au>Miao, Hongyu</au><au>Zhi, Degui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PK-RNN-V E: A deep learning model approach to vancomycin therapeutic drug monitoring using electronic health record data</atitle><jtitle>Journal of biomedical informatics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>133</volume><spage>104166</spage><epage>104166</epage><pages>104166-104166</pages><artnum>104166</artnum><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>[Display omitted]
•PK-RNN is an AI-based pharmacokinetic (PK) model for therapeutic drug monitoring.•PK-RNN uses RNN to makes personalized prediction integrating individual EHR data.•PK-RNN integrates RNN and pharmacokinetic equations into end-to-end model.•PK-RNN-V outperformed Bayesian based PK model in predicting vancomycin levels.•PK-RNN is generalizable to other drugs, enabling new models for precision dosing.
Vancomycin is a commonly used antimicrobial in hospitals, and therapeutic drug monitoring (TDM) is required to optimize its efficacy and avoid toxicities. Bayesian models are currently recommended to predict the antibiotic levels. These models, however, although using carefully designed lab observations, were often developed in limited patient populations. The increasing availability of electronic health record (EHR) data offers an opportunity to develop TDM models for real-world patient populations. Here, we present a deep learning-based pharmacokinetic prediction model for vancomycin (PK-RNN-V E) using a large EHR dataset of 5,483 patients with 55,336 vancomycin administrations. PK-RNN-V E takes the patient’s real-time sparse and irregular observations and offers dynamic predictions. Our results show that RNN-PK-V E offers a root mean squared error (RMSE) of 5.39 and outperforms the traditional Bayesian model (VTDM model) with an RMSE of 6.29. We believe that PK-RNN-V E can provide a pharmacokinetic model for vancomycin and other antimicrobials that require TDM.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jbi.2022.104166</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0464 |
ispartof | Journal of biomedical informatics, 2022-09, Vol.133, p.104166-104166, Article 104166 |
issn | 1532-0464 1532-0480 |
language | eng |
recordid | cdi_proquest_miscellaneous_2704871981 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Bayesian model Deep learning Pharmacokinetics Recurrent neural network Vancomycin |
title | PK-RNN-V E: A deep learning model approach to vancomycin therapeutic drug monitoring using electronic health record data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PK-RNN-V%20E:%20A%20deep%20learning%20model%20approach%20to%20vancomycin%20therapeutic%20drug%20monitoring%20using%20electronic%20health%20record%20data&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Nigo,%20Masayuki&rft.date=2022-09&rft.volume=133&rft.spage=104166&rft.epage=104166&rft.pages=104166-104166&rft.artnum=104166&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2022.104166&rft_dat=%3Cproquest_cross%3E2704871981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704871981&rft_id=info:pmid/&rft_els_id=S1532046422001782&rfr_iscdi=true |